Introduction
Exercise is one of the main factors by which a balance is maintained in the body, generating physiological and emotional health. This practice has been related _I to the reduction of morbidity and mortality rates in chronic degenerative diseases. Indicating that exercising reduces the risk of developing heart disease, diabetes, colon cancer, high blood pressure, among others (Colberg et al., 2016; Figueroa, Wong, Jaime & Gonzales, 2017). Each type of exercise requires a certain level of resistance, strength, speed and mobility depending on the importance of achieving the results that are intended to be obtained in competition. High-performance endurance sports include cardiovascular or aerobic exercise such as running, cross-country skiing, cycling, or swimming; of which are carried out over a long period of time (Joyner & Coyle, 2008). High-performance athletes must maintain a great effort for as long as possible, generating an increase in cardiac, pulmonary and circulatory capacity. These processes require increasing oxygenation and nutrients at the muscle level. During this process, athletes overcome their own resistance and increase the degree of intensity of exercise, generating systemic damage affecting the intestinal tract. Reflecting in damage to the epithelium that involves intestinal permeability, modifications in microbiota, oxidative stress and an increase in pro-inflammatory processes. The intake of natural products with a high content of dietary fiber and polyphenols over time has been a beneficial alternative to promote correct gastrointestinal and systemic homeostasis. Dietary fiber, in addition to reducing digestive symptoms such as constipation and diarrhea, improves the intestinal microbiome and serves as an energy substrate for the same intestinal microbiota, favoring the production of healthy metabolites that have a prebiotic effect, favoring intestinal symbiosis. Furthermore, metabolites such as polyphenols have been associated with a bidirectional relationship with the intestinal microbiota and are related to anti-inflammatory and antioxidant effects (Fraga, Croft, Kennedy & Tomás-Barberán, 2019; So et al., 2018). Increasing the consumption of these natural compounds during high resistance training can serve as an alternative to reduce the damage caused by exercise and promote the regeneration of intestinal tissue, as well as maintain systemic homeostasis.
Gastrointestinal symptoms caused by resistance training
An endurance athlete who practices high-performance exercise is a person who requires a high work level and development of their morphological, functional, biochemical and psychological capacities. This type of athletes is more prone to suffer gastrointestinal disorders and systemic modifications due the training that they perform is exhaustive (García-Naveira, 2010). The prevalence of diarrhea (44%), abdominal pain (44%), vomiting (22%) and nausea (89%) have been observed in high-performance athletes being these symptoms a cause of gastrointestinal discomforts (Figure 1) (Stuempfle, Hoffman & Hew, 2013). The modifications that occur at systemic level are changes of the gastrointestinal blood circulation caused by a splanchnic hypoperfusion resulting mainly damage to the intestinal tissue, erosions in the intestinal mucosa and an increase in intestinal permeability, triggering inflammatory and oxidative processes as well as intestinal microbiota modifications (Lamprecht & Frauwallner, 2012).
Figure 1
Effects generated by high-resistance training on normal functions of the gastrointestinal tract. Personal elaboration.
Modifications of the intestinal barrier generated by resistance training
The intestinal barrier it is represented by a monocellular layer of epithelial cells where the plasma membrane of these cells restricts transcellular transport of negative molecules. Within this monolayer, specialized cells, such as globet and Paneth cells provide additional components of the intestinal barrier by producing mucus and antibacterial proteins, respectively. Paracellular transport between epithelial cells is also restricted by intricate spatial arrangements of tight junction proteins including claudins, zonula occludens (ZO-1 and ZO-2) and occludens (Ghosh, Wang, Yannie & Ghosh, 2020). A defective intestinal barrier may result in increased intestinal permeability which promotes the exposition to luminal content and triggers intestinal imbalance. Inflammatory bowel diseases display several defects in the many components of the intestinal barrier. These alterations may represent a primary dysfunction in Crohn's disease and colon cancer. On the other hand, it has been described that the high-resistance training also impacts the intestinal barrier integrity (JanssenDuijghuijsen et al., 2016; Lee, 2015). Different in vivo studies have been carried out to establish how the type and exercise intensity training generate intestinal barrier modification. Mice that were subjected to exercise training at 80% VO2max until exhaustion, showed an increase in intestinal permeability after the training and the damage remained even after five hours post-exercise (Gutekunst, Krüger, August, Diener & Mooren, 2014). Human studies have also been carried out where it was observed that due to intensity and type of exercise that was considering of high-resistance, the athletes presented gastrointestinal symptoms emphasizing nausea, diarrhea or abdominal pain just after running a 10 km for 90 minutes. At the end of the race, the athletes had presented alterations in the gastrointestinal barrier with a specially increase of intestinal permeability (Karhu et al., 2017). In contrast with the modifications of the intestinal barrier caused by exercise, body temperature is another variable that modifies the intestinal barrier which can lead to presented intestinal permeability causing also systemic damage (Pires et al., 2017).
Microbiota modification generated by resistance training
The intestinal microbiota is the community of microorganisms that reside in the digestive tract. The main phyla included in the human microbiome are Firmicutes and Bacteroidetes represented the 90% of the total intestinal microbiota, however, there are other phyla in lesser quantity that perform various metabolic activities such as Actinobacteria, Verrucomicrobia and Proteobacteria (Greenhalgh, Meyer, Aagaard & Wilmes, 2016). The intestinal microbiota promotes digestion and absorption of nutrients from food to generate energy, as well as, protecting against infections, regulating the epithelium and balancing oxidative stress, promoting intestinal barrier function and protection against pathogen colonization and stimulation of the immunological system (Thomas, Parker, Divekar, Pin & Watson, 2018). Physical exercise is one of the causes of the modification of the intestinal microbiota, generating beneficial or negative effects on human health (Figure 2). Athlete microbiomes have been reported to contain a high abundance of Veillonellaceae, Bacteroidetes, Prevotella, Methanobrevibacter, andAkkermansia (Scheiman et al., 2019). The observational study by Clark & Mach, 2016 showed significant changes between the microbiota of the players and the control groups specifically in the relationships of Faecalibacterium prausnitzii and Akkermansia muciniphila. This bacterias have been suggested to be probiotics and both show a crucial role in prebiotic fermentation (Bu et al., 2020; Ferreira, Sousa & Andrade, 2017). In animal training models, a higher abundance of Firmicutes has been found compared to another bacterial phylum. This phylum is composed of more than 200 different genera such as Lactobacillus, Bacillus, Clostridium, Enterococcus and Ruminococus, strains related to positive effects on the intestinal microbiota (Rinninella et al., 2019). Additionally, members of the Bacteroidetes phylum in particular have been associated with human metabolic diseases and, a decrease in the B. phylum has been observed in the analysis of the microbiome of endurance athletes comparing this type of athletes with the sedentary control group (Kulecka et al., 2020). On the other hand, studies in professional cyclists show an increase in genera and species related to carbohydrate metabolism and energy generation emphasizing Prevotella and Methanobrevibacter smithii (Petersen et al., 2017). High intensity exercise, without adequate training, can be a stress factor for the body and this tendence has a negative effect on the intestinal microbiota (Ticinesi et al., 2019). In human trials, it was determined that an intense military training generated an increase in intestinal permeability and inflammation markers, these results were related to a greater abundance of Bacteroides (Karl et al., 2017). As part of the gut microbiota metabolism, the short chain fatty acids (SCFAs) are the main metabolites produced by the microbiota. SCFAs have been reported to increase after exercise. Butyrate is the most relevant SCFA as a marker of intestinal health and it is generated by Faecalibacterium prausnitzii, Roseburia hominis and Akkermansia muciniphila, and the genus Coprococcus. Specifically, the butyrate produced by Roseburia hominis and Faecalibacterium prausnitzii also has a positive impact on lipid metabolism in athletes (Machiels et al., 2014). With the mentioned above, it is clear that the microbiota and the metabolism products of them may be an intestinal barrier protection and at the same time dependent of the training intensity.
Figure 2
Modification of the gut microbiota generated by High-resistance training. Personal elaboration.
Impact of high-resistance training on oxidative stress
The human body naturally produces free radicals and reactive species as part of metabolic processes such as superoxide anion (O2•), hydrogen peroxide (H2O2) and hydroxyl radical (•OH), nitric oxide (NO) and reactive oxygen and nitrogen species (RONS) respectability (Radak et al., 2017). These molecules generate beneficial effects, among them, the activation of the immune system, allowing to counteract various pathologies. However, they can generate adverse effects like cytotoxicity, genotoxicity, development of neurodegenerative and cardiovascular diseases, inflammatory processes, cancer and systemic modification in situations of physical activity training and exercise by damaging several tissue and cellular components including oxidation of biomolecules (lipids, proteins and DNA) (Boccatonda, Tripaldi, Daví & Santilli, 2016; Sies, 2015). The organism has antioxidant defense mechanisms that neutralize the action of the different reactive species: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) as enzymatic mechanisms and non-enzymatic antioxidant mechanisms (ascorbic acid, α, β, γ isomers, tocopherols, tocotrienols, carotenes and flavonoids). Therefore, an imbalance between production of reactive oxygen species and an adequate antioxidant defense generates an oxidative stress state and possibly tissue damage (Figure 3). The exercise generates beneficial health effects by reducing oxidative stress. This effect depends on the type of exercise, the intensity and the duration with which athletes usually train (Pingitore et al., 2015). During high intensity exercise, an exacerbated state of oxidative stress is generated by different processes: a) oxygen metabolism, b) ischemia and reperfusion phenomena, c) autoxidation process of hemoglobin and myoglobin, d) increase in body temperature, e) catecholamines release) f) lactate production, (Duncker & Bache, 2008; Kruk, Kotarska & Aboul-Enein, 2020; McAnulty et al., 2005; Morris, Nevill, Boobis, Macdonald & Williams, 2005; Starkov, 2008). In response to these processes related with oxidative stress and exercise, it is activated the redox signaling pathway implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction (Mason, Morrison, McConell & Wadley, 2016). Different studies indicate that skeletal muscle cell mitochondria were the likely generators of high concentrations of hydrogen peroxide. However, NADPH oxidase and xanthine oxidase enzymes may contribute to the relative increase of oxidative stress in whole body (Jackson, Vasilaki & McArdle, 2016). Studies indicate the use of the pharmacological agent Allopurinol inhibits xanthine oxidase, a free radical-generating enzyme, this compound is involved in tissue damage produced during exhaustive exercise (Sanchis et al., 2015). In this sense, a greater amount ofRONS regulates negatively muscle metabolism by inactivating the adenosine monophosphate-activated kinase (AMPK) pathway and mitochondrial biogenesis (Morales-Alamo & Calbet, 2016). There are reports that indicate the continuous production of free radicals generated during high-resistance training promote a physiological adaptation to oxidative stress through the action of endogenous antioxidants after a certain periodic time, this is due to the increase in antioxidant enzymes such as glutathione reductase and superoxide dismutase. All these mechanisms depend of the intensity and exercise type promoting benefits or harm at systemic level (Boccatonda et al., 2016).
Figure 3
Comparison of cell antioxidant system activation. Antioxidant process generated by antioxidant enzymes under normal exercise execution conditions compared to oxidative stress generated by overporduction reactive oxygen species generated during exercise of can resistance. Personal elaboration.
Inflammatory process generated by high-intensity training in athletes
The inflammatory process is one of the basic defense mechanisms against external aggressions. Activation of the immune response appears to play a key role in endurance exercise performance. This is related according to the type and intensity of training, generating mild or severe inflammatory processes. Moderate exercise allows an adaptation and improvement of the immune system compared to resistance exercise that can increase the concentration of reactive oxygen species and, consequently, induction of an inflammatory reaction (Pedersen, 2017). The inflammatory mechanism of resistance exercise has been described, this includes a reduction in the function of immune cells (Natural killer cells, neutrophils, T and B lymphocytes), increase of proinflammatory (TNF-α, IL-1β e IL-6) and antiinflammatory cytokines (IL-10), chemokines (IL-8) and the expression of macrophages of the major histocompatibility complex (Passos et al., 2019). It has been described that the secretion of interleukins is related to the course of time after the execution of the exercise. IL-6 is synthesized immediately after the exercise. This is secreted at muscular level and it is concentrations usually have a fifty-fold increase compared with normal concentrations (Pedersen & Hoffman-Goetz, 2000). IL-1 has been detected five days after training, it was related with prolonged muscle damage. Whereas IL-10 is secreted after thirty minutes of high-intensity training (Cabral-Santos et al., 2019). Increased secretion of IL-10 has been correlated to the protection of other systemic inflammatory processes including intestinal inflammation (Gleeson et al., 2011). High-intensity performance exercise can generate an alternate inflammation process by increasing the permeability of the intestinal epithelial wall and modifications in the mucosal layer (Marlicz & Loniewski, 2015). Therefore, it implies loss of the selectivity of the intestinal wall, allowing the entry of large molecules into the bloodstream, generating an immune response. Pathogens or their endotoxins can be transported through the damaged intestinal wall, generating the recognition and activation of specific toll-like receptors (TLR), these compounds activate signaling cascades, generating the transcription process of proinflammatory proteins to the gastrointestinal tract. In this sense, the real inflammatory damage is going to be as a consequence of exercise type and the complications at systemic level, as it happens at intestinal level (Trevisi et al., 2008).
Effect of natural sources intake as a therapeutic alternative on high- resistance athletes
High-resistance athletes have specific nutritional needs to maintain adequate energy and nutrient consumption and then be able to performance periods of long-lasting resistance training, avoiding fatigue and health conditions. For this reason, high-resistance athletes and any kind of athletes should consume different types of products gels, bars, drinks, protein, vitamins, minerals, ergogenic and herbal supplements (Table I). Currently, the athletes consume natural products with the aim of improving performance and frequently there are found it on the market, such as extracts obtained from different parts of plants and fruits. This type of extracts contains a large number of bioactive compounds (phenolic compounds, alkaloids, carotenoids, and others) which are used as supplements to increase mental agility, stimulate energy metabolism and improve muscle performance. Likewise, athletes usually consume different products that contain dietary fiber most of the time to maintain weight control and intestinal homeostasis.
Table I
Type of natural products consumed by athletes.
Product |
Systemic effect |
Carbohydrates
|
Energy drinks, energy bars, gells, and concentrate powders. |
Improvement of exercise performance and increased of the ergogenic effect in central nervous system (Redondo et al., 2019). |
Proteins
|
Eggs, milk, meat and products like casein or whey. |
Activation of metabolic pathways related with muscle hypertrophy and prevention of protein catabolism. Also, increased muscle strength (Redondo et al., 2019). |
Amino acids
|
Arginine or branched-chain amino acid mixtures. |
Blood flow increase, oxygen and nutrients supply to skeletal muscle (Brooks et al., 2016). |
Polyunsaturated fatty acids
|
Capsules and food. |
Improvement of protein synthesis and muscle function, less reduction of damage induced by inflammation process during exercise (Lewis, Radonic, Wolever & Wells, 2015). |
Natural sources of nitrates
|
Beet juice as nitrate sources in presentations in forms of powder, juice concentrates and shots. |
Reduction of oxygen consumption and improvement of exhaustion time, cardiorespiratory performance and maximum VO2 (Vitale & Getzin, 2019). |
Antioxidants
|
Vitamins such as C and E. |
Inhibition of signaling pathways in oxidative stress process (Gomez-Cabrera et al., 2008; Passos et al., 2019). |
Dietary fiber intake as a natural alternative
There are a large number of natural products that can be studied, such as fruits, vegetables or grains, that have been reported to be high contain in fiber. Dietary fiber is a carbohydrate polymer with three or more monomeric units that are resistant to endogenous digestive enzymes, therefore are not hydrolyzed or absorbed in the small intestine. This is classified into insoluble and soluble fiber. The fiber is available in the form of insoluble or partially fermentable fiber, which generally has cellulose as an essential component, followed by lignin and hemicelluloses. This type of fiber is poorly degraded by the action of intestinal and colonic bacteria, being practically entirely excreted through the feces, exerting an effect on the volume and fecal weight. The soluble fiber is responsible for delaying gastric emptying and intestinal transit, its solubility in water conditions the formation of gels in the intestine, which makes this type of fiber more fermentable and contributes to the production of different beneficial metabolites and includes gums, mucilages, inulin, fructooligosaccharides, galactoolysaccharides, pectins, and some hemicelluloses (Barber, Kabisch, Pfeiffer & Weickert, 2020).
The adequate fiber intake is an option to improve gastrointestinal symptoms regardless of condition. The recommendations for fiber intake in healthy people based on their sex and age, as mentioned by the Institute of Medicine, indicated a recommended dose of fiber between 19-38 g/day (Institute of Medicine, Food and Nutrition Board, 2005). Currently, research on the benefit of fiber consumption in high-performance athletes is limited. However, it has been established that the consumption of fermentable fiber generates a prebiotic effect by increasing different bacterial genera in the colon, mainly Bifidobacterium (Cantu & Hamaker, 2020). Sometimes, gastrointestinal diseases in endurance athletes are often related to inadequate fiber intake experiencing abdominal cramps, diarrhea or symptoms such as bloating during the training process (Jeukendrup, 2017). Currently has been established a relation between fiber consumption and increased physical performance in older population generating an improvement in physical performance by measuring gait speed and grip strength (Wu et al., 2013). At the fiber fermentation process, short chain fatty acids are generated, these generate beneficial effects in the colon. In vitro model studies have shown that butyrate exerts specific anti-inflammatory actions, modulating the transcription factor NF-kB and therefore decreasing pro-inflammatory cytokines (TNF-α) (Parada-Venegas et al., 2019). Likewise, it has been reported that the production of propionate, one of the most important short-chain fatty acids produced as a substrate by bacterial fermentation during the consumption of dietary fiber, increases training performance by improving muscular endurance (Scheiman et al., 2019). In this sense, it has been shown that the controlled consumption of dietary fiber in the diet has anti-inflammatory effects, decreasing the serum level of inflammatory mediators and a decrease in the oxidative process in the body (Tierrablanca, Luna, Guzmán, Ramírez & Aguilar, 2019). Therefore, the consumption of fiber by high resistance training athletes with intestinal injury can help to regenerate the intestinal barrier, promoting a symbiotic effect on the gut microbiota, reducing oxidative stress and inflammatory processes, and therefore, reducing gastrointestinal symptoms.
Polyphenols, an alternative for high-resistance training
Polyphenols are a large group of bioactive compounds derived from plants. These are classified into two different main classes: phenolic acid and flavonoids. Its chemical structure is conformed of a C6-C3-C6 base skeleton. At flavonoids, the two aromatic rings that conformed it, differ in their oxidation degree and at the same time in different subclasses: flavones, flavonols, isoflavones, flavanones, anthocyanins and flavanols. Polyphenols are also found within food sources as large structures, composed of oligomers and polymers forming tannins, which are divided into hydrolysable tannins (gallic and ellagic acids) and condensed tannins (procyanidins) (Amiot, Riva & Vinet, 2016). These compounds are metabolized in the intestine through digestive enzymes, however not all polyphenols are metabolized at this level since large compounds such as hydrolysable tannins, condensed tannins, and the polyphenols that are bounded to dietary fiber will be go to large intestine where they will be finish being metabolized by the gut microbiota (Crozier, Del Río & Clifford, 2010). In athletes the benefits are related to the reduction of severe oxidative damage, muscle weakness, reduction of inflammatory processes and intestinal health (Espín, González-Sarrías & Tomás-Barberán, 2017). For this reason, athletes currently consume sports nutritional supplements that contain antioxidants specifically polyphenolic compounds such as flavanols, (epi)-catechin, catechin and procyanidins, being consumed naturally as part of supplements. Contrary, some of the supplements that athletes consume usually have some source of polyphenols in their composition, but it is usually in small doses (Daneshvar et al., 2013; Gholami & Ardestani, 2018). The polyphenols consumption becomes relevant to increase high-resistance training over time and the impact that these compounds can have on the intestinal epithelium regeneration reducing the symptoms that afflict high-resistance athletes has been observed (Bowtell & Kelly, 2019). Polyphenols such as hydroxycinnamic acids, flavanols, flavanols and hydroxybenzoic acids, have a beneficial effect due to their prebiotic, antioxidant and anti-inflammatory properties that are related to improving systemic and intestinal discomfort at the gastrointestinal tract level in athletes (Singh, Yau, Leung, El-Nezami & Lee, 2020). It should be described that athletes usually consume products that contain polyphenols in order to reduce a muscular injury generated by high impact or resistance exercise since during this process, the muscle fibers are exposed to high mechanical forces causing muscle damage. Currently studies have determinate that supplementation of a 1200 mg/day dose of polyphenols during 3 days prior to exercise and recovery has been reported to improve muscle function (Bowtell & Kelly, 2019). On the other hand, the consumption of a commercial supplement based on polyphenols extract managed to demonstrate its effect on metabolic homeostasis and exercise performance during high-intensity training under anaerobic conditions (Cases et al., 2017). Another type of effects generated by polyphenols consumption are the effects related to the intestinal barrier regeneration, as well as, systemic homeostasis what leads to a decrease of gastrointestinal symptoms in high-resistance training (Zhu, 2018). Likewise, it has been established that the polyphenols consumption modifies the intestinal microbiota promoting a prebiotic effect (Most, Penders, Lucchesi, Goossens & Blaak, 2017). Flavonoids can modify the composition of gut intestinal exerting prebiotic and bactericide properties (Etxeberria et al., 2015). In vitro and in vivo studies have shown that polyphenolic compounds promote the growth of Lactobacillus, Bifidobacterium, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Roseburia (Anhê et al., 2015). Like it is mentioned previously, the growth of these strains at intestinal level can promote beneficial effects for the athlete. Therefore, the intake of natural sources by high resistance training athletes with intestinal injury can help to regenerate the intestinal barrier, promoting a symbiotic effect on the gut microbiota, reducing oxidative stress and inflammatory processes due to can promote a real decrease in gastrointestinal discomfort.
Conclusions
The consumption of natural sources rich in fiber and polyphenolic compounds are excellent candidates for the treatment of symptoms presented by high-resistance athletes. These compounds can prevent or treat conditions generated at the gastrointestinal level. This effect is generated by reducing the processes of disruption of the intestinal barrier, generating a homeostasis of the intestinal microbiota, reducing oxidative and inflammatory processes. Making them excellent sources for constant consumption in athletes without affecting the physical performance demanded by the athlete. However, it is necessary to study in depth the mechanisms of the ingestion of natural sources in in vivo models of high resistance exercise as well as to establish adequate doses and types of polyphenols that exert a beneficial effect especially in this particular population to reach precise conclusions.
Acknowledgements
Thankful to the Tecnológico Nacional de México/ Instituto Tecnólogico de Durango, as well as, CONACYT, for the scholarship and the space awarded for M.C. Karen Marlenne Herrera Rocha, phD student of the Biochemical Engineering Science Program. Likewise, to MINECO of Spain for the concession of the AGL2016-77288-R project.
References
Amiot, M. J., Riva, C. & Vinet, A. (2016). Effects of dietary
polyphenols on metabolic syndrome features in humans: a systematic review.
Obesity Reviews, 17(7), 573-586. DOI:
10.1111/obr.12409.
M. J. Amiot
C. Riva
A. Vinet
2016Effects of dietary polyphenols on metabolic syndrome features in
humans: a systematic reviewObesity Reviews17(7)57358610.1111/obr.12409
Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin,
T. V., Varin, T., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E. &
Marette, A. (2015). A polyphenol-rich cranberry extract protects from
diet-induced obesity, insulin resistance and intestinal inflammation in
association with increased Akkermansia spp. population in the
gut microbiota of mice. Gut, 64(6), 872-883. DOI:
10.1136/gutjnl-2014-307142.
F. F. Anhê
D. Roy
G. Pilon
S. Dudonné
S. Matamoros
T. V. Varin
T. Varin
C. Garofalo
Q. Moine
Y. Desjardins
E. Levy
A. Marette
2015A polyphenol-rich cranberry extract protects from diet-induced
obesity, insulin resistance and intestinal inflammation in association with
increased Akkermansia spp. population in the gut microbiota of
miceGut64(6)87288310.1136/gutjnl-2014-307142
Barber, T. M., Kabisch, S., Pfeiffer, A. F. & Weickert, M. O.
(2020). The Health benefits of dietary fibre. Nutrients,
12(10), 3209. DOI: 10.3390/nu12103209.
T. M. Barber
S. Kabisch
A. F. Pfeiffer
M. O. Weickert
2020The Health benefits of dietary fibreNutrients12(10)10.3390/nu12103209
Boccatonda, A., Tripaldi, R., Davi, G. & Santilli, F. (2016).
Oxidative stress modulation through habitual physical activity. Current
Pharmaceutical Design, 22(24), 3648-3680. DOI:
10.2174/1381612822666160413123806.
A. Boccatonda
R. Tripaldi
G. Davi
F. Santilli
2016Oxidative stress modulation through habitual physical
activityCurrent Pharmaceutical Design22(24)3648368010.2174/1381612822666160413123806
Bowtell, J. & Kelly, V. (2019). Fruit-derived polyphenol
supplementation for athlete recovery and performance. Sports
Medicine, 49(1), 3-23. DOI:
10.1007/s40279-018-0998-x.
J. Bowtell
V. Kelly
2019Fruit-derived polyphenol supplementation for athlete recovery and
performanceSports Medicine49(1)32310.1007/s40279-018-0998-x
Brooks, J. R., Oketch-Rabah, H., Low Dog, T., Gorecki, D. K.,
Barrett, M. L., Cantilena, L., Chung, M., Costello, R., Dwyer, J., Hardy, M.,
Jordan, S., Maughan, R., Marles, R., Osterberg, R., Rodda, B., Wolfe, R.,
Zuniga, J., Valerio, L., Jones, D., Deuster, P., Giancaspro, G. & Sarma, N.
(2016). Safety and performance benefits of arginine supplements for military
personnel: a systematic review. Nutrition Reviews,
74(11), 708-721. DOI: 10.1093/nutrit/nuw040.
J. R. Brooks
H. Oketch-Rabah
T. Low Dog
D. K. Gorecki
M. L. Barrett
L. Cantilena
M. Chung
R. Costello
J. Dwyer
M. Hardy
S. Jordan
R. Maughan
R. Marles
R. Osterberg
B. Rodda
R. Wolfe
J. Zuniga
L. Valerio
D. Jones
P. Deuster
G. Giancaspro
N. Sarma
2016Safety and performance benefits of arginine supplements for
military personnel: a systematic reviewNutrition Reviews74(11)70872110.1093/nutrit/nuw040
Bu, F., Zhang, S., Duan, Z., Ding, Y., Chen, T., Wang, R., Feng, Z.,
Shi, G., Zhou, J. & Chen, Y. (2020). A critical review on the relationship
of herbal medicine, Akkermansia muciniphila, and human health.
Biomedicine & Pharmacotherapy, 128,
110352. DOI: 10.1016/j.biopha.2020.110352.
F. Bu
S. Zhang
Z. Duan
Y. Ding
T. Chen
R. Wang
Z. Feng
G. Shi
J. Zhou
Y. Chen
2020A critical review on the relationship of herbal medicine,
Akkermansia muciniphila, and human healthBiomedicine & Pharmacotherapy12810.1016/j.biopha.2020.110352
Cabral Santos, C., de Lima Junior, E. A., Fernandes, I. M. D. C.,
Pinto, R. Z., Rosa Neto, J. C., Bishop, N. C. & Lira, F. S. (2019).
Interleukin 10 responses from acute exercise in healthy subjects: a systematic
review. Journal of Cellular Physiology, 234(7),
9956-9965. DOI: 10.1002/jcp.27920.
C. Cabral Santos
E. A. de Lima Junior
I. M. D. C. Fernandes
R. Z. Pinto
J. C. Rosa Neto
N. C. Bishop
F. S. Lira
2019Interleukin 10 responses from acute exercise in healthy subjects:
a systematic reviewJournal of Cellular Physiology234(7)9956996510.1002/jcp.27920
Cantu, T. M. & Hamaker, B. R. (2020). New view on dietary fiber
selection for predictable shifts in gut microbiota. Mlbio,
11(1), e02179-19. DOI: 10.1128/mBio.02179-19.
T. M. Cantu
B. R. Hamaker
2020New view on dietary fiber selection for predictable shifts in gut
microbiotaMlbio11(1)e02179e0211910.1128/mBio.02179-19
Cases, J., Romain, C., Marín-Pagán, C., Chung, L. H., Rubio-Pérez,
J. M., Laurent, C., Gaillet, S., Prost-Camus, E., Prost, M. & Alcaraz, P. E.
(2017). Supplementation with a polyphenol-rich extract, perfload®, improves
physical performance during high-intensity exercise: a randomized, double blind,
crossover trial. Nutrients, 9(4), 421. DOI:
10.1002/jcp.27920.
J. Cases
C. Romain
C. Marín-Pagán
L. H. Chung
J. M. Rubio-Pérez
C. Laurent
S. Gaillet
E. Prost-Camus
M. Prost
P. E. Alcaraz
2017Supplementation with a polyphenol-rich extract, perfload®,
improves physical performance during high-intensity exercise: a randomized,
double blind, crossover trialNutrients9(4)42142110.1002/jcp.27920
Clark, A. & Mach, N. (2016). Exercise-induced stress behavior,
gut-microbiota-brain axis and diet: a systematic review for athletes.
Journal of the International Society of Sports Nutrition,
13(1), 1-21. DOI: 10.1186/s12970-016-0155-6.
A. Clark
N. Mach
2016Exercise-induced stress behavior, gut-microbiota-brain axis and
diet: a systematic review for athletesJournal of the International Society of Sports Nutrition13(1),12110.1186/s12970-016-0155-6
Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C.,
Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K. & Tate, D. F.
(2016). Physical activity/exercise and diabetes: a position statement of the
American Diabetes Association. Diabetes Care,
39(11), 2065-2079. DOI: /10.2337/dc16-1728.
S. R. Colberg
R. J. Sigal
J. E. Yardley
M. C. Riddell
D. W. Dunstan
P. C. Dempsey
E. S. Horton
K. Castorino
D. F. Tate
2016Physical activity/exercise and diabetes: a position statement of
the American Diabetes AssociationDiabetes Care39(11)2065207910.2337/dc16-1728
Crozier, A., Del Rio, D. & Clifford, M. N. (2010).
Bioavailability of dietary flavonoids and phenolic compounds. Molecular
Aspects of Medicine, 31(6), 446-467. DOI:
10.1016/j.mam.2010.09.007.
A. Crozier
D. Del Rio
M. N. Clifford
2010Bioavailability of dietary flavonoids and phenolic
compoundsMolecular Aspects of Medicine31(6)44646710.1016/j.mam.2010.09.007
Daneshvar, P., Hariri, M., Ghiasvand, R., Askari, G., Darvishi, L.,
Mashhadi, N. S. & Khosravi-boroujeni, H. (2013). Effect of eight weeks of
quercetin supplementation on exercise performance, muscle damage and body muscle
in male badminton players. International Journal of Preventive
Medicine, 4(1), S53-S57.
P. Daneshvar
M. Hariri
R. Ghiasvand
G. Askari
L. Darvishi
N. S. Mashhadi
H. Khosravi-boroujeni
2013Effect of eight weeks of quercetin supplementation on exercise
performance, muscle damage and body muscle in male badminton
playersInternational Journal of Preventive Medicine4(1)S53S57
Duncker, D. J. & Bache, R. J. (2008). Regulation of coronary
blood flow during exercise. Physiological Reviews,
88(3), 1009-1086. DOI:
10.1152/physrev.00045.2006.
D. J. Duncker
R. J. Bache
2008Regulation of coronary blood flow during exercisePhysiological Reviews88(3)1009108610.1152/physrev.00045.2006
Espín, J. C., González-Sarrías, A. & Tomás-Barberán, F. A.
(2017). The gut microbiota: a key factor in the therapeutic effects of (poly)
phenols. Biochemical Pharmacology, 139, 82-93.
DOI: 10.1016/j.bcp.2017.04.033.
J. C. Espín
A. González-Sarrías
F. A. Tomás-Barberán
2017The gut microbiota: a key factor in the therapeutic effects of
(poly) phenolsBiochemical Pharmacology139829310.1016/j.bcp.2017.04.033
Etxeberria, U., Arias, N., Boqué, N., Macarulla, M. T., Portillo, M.
P., Martínez, J. A. & Milagro, F. I. (2015). Reshaping faecal gut microbiota
composition by the intake of trans-resveratrol and quercetin in high-fat sucrose
diet-fed rats. The Journal of Nutritional Biochemistry,
26(6), 651-660. 19. DOI:
10.1016/j.jnutbio.2015.01.002.
U. Etxeberria
N. Arias
N. Boqué
M. T. Macarulla
M. P. Portillo
J. A. Martínez
F. I. Milagro
2015Reshaping faecal gut microbiota composition by the intake of
trans-resveratrol and quercetin in high-fat sucrose diet-fed
ratsThe Journal of Nutritional Biochemistry26(6)65166010.1016/j.jnutbio.2015.01.002
Ferreira, C. V., de Sousa, A. V. & Andrade, S. S. (2017). Action
and function of Faecalibacterium prausnitzii in health and
disease. Best Practice & Research Clinical
Gastroenterology, 31(6), 643-648. DOI:
10.1016/j.bpg.2017.09.011.
C. V. Ferreira
A. V. de Sousa
S. S. Andrade
2017Action and function of Faecalibacterium prausnitzii in health and
diseaseBest Practice & Research Clinical Gastroenterology31(6)64364810.1016/j.bpg.2017.09.011
Figueroa, A., Wong, A., Jaime, S. J. & Gonzales, J. U. (2017).
Influence of L-citrulline and watermelon supplementation on vascular function
and exercise performance. Current Opinion in Clinical Nutrition and
Metabolic Care, 20(1), 92-98. DOI:
10.1097/MCO.0000000000000340.
A. Figueroa
A. Wong
S. J. Jaime
J. U. Gonzales
2017Influence of L-citrulline and watermelon supplementation on
vascular function and exercise performanceCurrent Opinion in Clinical Nutrition and Metabolic Care20(1)929810.1097/MCO.0000000000000340
Fraga, C. G., Croft, K. D., Kennedy, D. O. & Tomás-Barberán, F.
A. (2019). The effects of polyphenols and other bioactives on human health.
Food & Function, 10(2), 514-528. DOI:
10.1039/c8fo01997e.
C. G. Fraga
K. D. Croft
D. O. Kennedy
F. A. Tomás-Barberán
2019The effects of polyphenols and other bioactives on human
healthFood & Function10(2)51452810.1039/c8fo01997e
García-Naveira, A. (2010). El psicólogo del deporte en el alto
rendimiento: aportaciones y retos futuros. Papeles del
Psicólogo, 31(3), 259-268.
A. García-Naveira
2010El psicólogo del deporte en el alto rendimiento: aportaciones y
retos futurosPapeles del Psicólogo31(3)259268
Gholami, M. & Ardestani, M. (2018). Effects of quercetin
supplementation on exercise induced inflammation and immune cell changes after
exhausting swimming in adolescent girls. Asian Journal of Sports
Medicine, 9(3), 0-0. DOI:
10.5812/asjsm.60157.
M. Gholami
M. Ardestani
2018Effects of quercetin supplementation on exercise induced
inflammation and immune cell changes after exhausting swimming in adolescent
girlsAsian Journal of Sports Medicine9(3)10.5812/asjsm.60157
Ghosh, S. S., Wang, J., Yannie, P. J. & Ghosh, S. (2020).
Intestinal barrier function and metabolic/liver diseases. Liver
Research, 4(2), 81-87. DOI:
10.1016/j.livres.2020.03.002.
S. S. Ghosh
J. Wang
P. J. Yannie
S. Ghosh
2020Intestinal barrier function and metabolic/liver
diseasesLiver Research4(2)818710.1016/j.livres.2020.03.002
Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana,
S. S. & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise:
mechanisms and implications for the prevention and treatment of disease.
Nature Reviews Immunology, 11(9), 607-615.
DOI: 10.1038/nri3041.
M. Gleeson
N. C. Bishop
D. J. Stensel
M. R. Lindley
S. S. Mastana
M. A. Nimmo
2011The anti-inflammatory effects of exercise: mechanisms and
implications for the prevention and treatment of diseaseNature Reviews Immunology11(9)60761510.1038/nri3041
Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A.,
Borras, C., Pallardo, F. V, Sastre, J. & Vina, J. (2008). Oral
administration of vitamin C decreases muscle mitochondrial biogenesis and
hampers training-induced adaptations in endurance performance. The
American Journal of Clinical Nutrition, 87(1),
142-149. DOI: 10.1093/ajcn/87.1.142.
M. C. Gomez-Cabrera
E. Domenech
M. Romagnoli
A. Arduini
C. Borras
F. V Pallardo
J. Sastre
J. Vina
2008Oral administration of vitamin C decreases muscle mitochondrial
biogenesis and hampers training-induced adaptations in endurance
performanceThe American Journal of Clinical Nutrition87(1)14214910.1093/ajcn/87.1.142
Greenhalgh, K., Meyer, K. M., Aagaard, K. M. & Wilmes, P.
(2016). The human gut microbiome in health: establishment and resilience of
microbiota over a lifetime. Environmental Microbiology,
18(7), 2103-2116. DOI:
10.1111/1462-2920.13318.
K. Greenhalgh
K. M. Meyer
K. M. Aagaard
P. Wilmes
2016The human gut microbiome in health: establishment and resilience
of microbiota over a lifetimeEnvironmental Microbiology18(7)2103211610.1111/1462-2920.13318
Gutekunst, K., Krüger, K., August, C., Diener, M. & Mooren, F.
C. (2014). Acute exercises induce disorders of the gastrointestinal integrity in
a murine model. European Journal of Applied Physiology,
114(3), 609-617. DOI:
10.1007/s00421-013-2791-8.
K. Gutekunst
K. Krüger
C. August
M. Diener
F. C. Mooren
2014Acute exercises induce disorders of the gastrointestinal
integrity in a murine modelEuropean Journal of Applied Physiology114(3)60961710.1007/s00421-013-2791-8
Jackson, M. J., Vasilaki, A. & McArdle, A. (2016). Cellular
mechanisms underlying oxidative stress in human exercise. Free Radical
Biology and Medicine, 98, 13-17. DOI:
10.1016/j.freeradbiomed.2016.02.023.
M. J. Jackson
A. Vasilaki
A. McArdle
2016Cellular mechanisms underlying oxidative stress in human
exerciseFree Radical Biology and Medicine98131710.1016/j.freeradbiomed.2016.02.023
JanssenDuijghuijsen, L. M., Mensink, M., Lenaerts, K., Fiedorowicz,
E., Protégé study group, van Dartel, D. A., Mes, J. J., Luiking, Y. C., Keijer,
J., Wichers, H. J., Witkamp, R. F. & van Norren, K., (2016). The effect of
endurance exercise on intestinal integrity in well-trained healthy men.
Physiological Reports, 4(20), e12994. DOI:
10.14814/phy2.12994.
L. M. JanssenDuijghuijsen
M. Mensink
K. Lenaerts
E. Fiedorowicz
Protégé study group
D. A. van Dartel
J. J. Mes
Y. C. Luiking
J. Keijer
H. J. Wichers
R. F. Witkamp
K. van Norren
2016The effect of endurance exercise on intestinal integrity in
well-trained healthy menPhysiological Reports4(20)e1299410.14814/phy2.12994
Jeukendrup, A. E. (2017). Training the gut for athletes.
Sports Medicine , 47(1), 101-110. DOI:
10.1007/s40279-017-0690-6.
A. E. Jeukendrup
2017Training the gut for athletesSports Medicine47(1)10111010.1007/s40279-017-0690-6
Johnson, E. L., Heaver, S. L., Walters, W.A. & Ley, R. E.
(2017). Microbiome and metabolic disease: revisiting the bacterial phylum
Bacteroidetes. Journal of Molecular Medicine,
95(1), 1-8. DOI: 10.1007/s00109-016-1492-2.
E. L. Johnson
S. L. Heaver
W.A. Walters
R. E. Ley
2017Microbiome and metabolic disease: revisiting the bacterial phylum
BacteroidetesJournal of Molecular Medicine95(1)1810.1007/s00109-016-1492-2
Joyner, M. J. & Coyle, E. F. (2008). Endurance exercise
performance: the physiology of champions. The Journal of
Physiology, 586(1), 35-44. DOI:
/10.1113/jphysiol.2007.143834.
M. J. Joyner
E. F. Coyle
2008Endurance exercise performance: the physiology of
championsThe Journal of Physiology586(1)354410.1113/jphysiol.2007.143834
Karhu, E., Forsgård, R. A., Alanko, L., Alfthan, H., Pussinen, P.,
Hämäläinen, E. & Korpela, R. (2017). Exercise and gastrointestinal symptoms:
running-induced changes in intestinal permeability and markers of
gastrointestinal function in asymptomatic and symptomatic runners.
European Journal of Applied Physiology ,
117(12), 2519-2526. DOI:
10.1007/s00421-017-3739-1.
E. Karhu
R. A. Forsgård
L. Alanko
H. Alfthan
P. Pussinen
E. Hämäläinen
R. Korpela
2017Exercise and gastrointestinal symptoms: running-induced changes
in intestinal permeability and markers of gastrointestinal function in
asymptomatic and symptomatic runnersEuropean Journal of Applied Physiology117(12)2519252610.1007/s00421-017-3739-1
Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E.,
Castellani, J. W., Gundersen, Y., Hoke, A.V., Levangie, M. W., Kumar, R.,
Chakraborty, N., Gautam, A., Hammamieh, R., Martini, S., Montain, S. J. &
Pasiakos, S. M. (2017). Changes in intestinal microbiota composition and
metabolism coincide with increased intestinal permeability in young adults under
prolonged physiological stress. American Journal of
Physiology-Gastrointestinal and Liver Physiology,
312(6), G559-G571. DOI:
10.1152/ajpgi.00066.2017.
J. P. Karl
L. M. Margolis
E. H. Madslien
N. E. Murphy
J. W. Castellani
Y. Gundersen
A.V. Hoke
M. W. Levangie
R. Kumar
N. Chakraborty
A. Gautam
R. Hammamieh
S. Martini
S. J. Montain
S. M. Pasiakos
2017Changes in intestinal microbiota composition and metabolism
coincide with increased intestinal permeability in young adults under
prolonged physiological stressAmerican Journal of Physiology-Gastrointestinal and Liver
Physiology312(6)G559G57110.1152/ajpgi.00066.2017
Kruk, J., Kotarska, K. & Aboul-Enein, B. H. (2020). Physical
exercise and catecholamines response: benefits and health risk: possible
mechanisms. Free Radical Research, 54(2-3),
105-125. DOI: 10.1080/10715762.2020.1726343.
J. Kruk
K. Kotarska
B. H. Aboul-Enein
2020Physical exercise and catecholamines response: benefits and
health risk: possible mechanismsFree Radical Research54(2-3)10512510.1080/10715762.2020.1726343
Kulecka, M., Fraczek, B., Mikula, M., Zeber-Lubecka, N.,
Karczmarski, J., Paziewska, A., Ambrozkiewicz, F., Jagusztyn-Krynicka, K.,
Cieszczyk, P. & Ostrowski, J. (2020). The composition and richness of the
gut microbiota differentiate the top Polish endurance athletes from sedentary
controls. Gut Microbes, 11(5), 1374-1384. DOI:
10.1080/19490976.2020.1758009.
M. Kulecka
B. Fraczek
M. Mikula
N. Zeber-Lubecka
J. Karczmarski
A. Paziewska
F. Ambrozkiewicz
K. Jagusztyn-Krynicka
P. Cieszczyk
J. Ostrowski
2020The composition and richness of the gut microbiota differentiate
the top Polish endurance athletes from sedentary controlsGut Microbes11(5)1374138410.1080/19490976.2020.1758009
Lamprecht, M. & Frauwallner, A. (2012). Exercise, intestinal
barrier dysfunction and probiotic supplementation. In Acute Topics in
Sport Nutrition, 59, 47-56. DOI:
10.1159/000342169.
M. Lamprecht
A. Frauwallner
2012Exercise, intestinal barrier dysfunction and probiotic
supplementationIn Acute Topics in Sport Nutrition59475610.1159/000342169
Lee, S. H. (2015). Intestinal permeability regulation by tight
junction: implication on inflammatory bowel diseases. Intestinal
Research, 13(1), 8-11. DOI:
10.5217/ir.2015.13.1.11.
S. H. Lee
2015Intestinal permeability regulation by tight junction: implication
on inflammatory bowel diseasesIntestinal Research13(1)81110.5217/ir.2015.13.1.11
Lewis, E. J., Radonic, P. W., Wolever, T. M. & Wells, G. D.
(2015). 21 days of mammalian omega-3 fatty acid supplementation improves aspects
of neuromuscular function and performance in male athletes compared to olive oil
placebo. Journal of the International Society of Sports
Nutrition , 12(1), 28. DOI:
10.1186/s12970-015-0089-4.
E. J. Lewis
P. W. Radonic
T. M. Wolever
G. D. Wells
201521 days of mammalian omega-3 fatty acid supplementation improves
aspects of neuromuscular function and performance in male athletes compared
to olive oil placeboJournal of the International Society of Sports Nutrition12(1)282810.1186/s12970-015-0089-4
Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I.,
Eeckhaut, V., Ballet, V., Claes, K., C., Van Inmmerseel, F., Verbeke, K.,
Ferrante, M., Verhaegen, J., Rutgeerts, P. & Vermeire, S. (2014). A decrease
of the butyrate-producing species Roseburia hominis and
Faecalibacterium prausnitzii defines dysbiosis in patients
with ulcerative colitis. Gut, 63(8), 1275-1283. DOI:
10.1136/gutjnl-2013-304833.
K. Machiels
M. Joossens
J. Sabino
V. De Preter
I. Arijs
V. Eeckhaut
V. Ballet
K. Claes
F. Van Inmmerseel
K. Verbeke
M. Ferrante
J. Verhaegen
P. Rutgeerts
S. Vermeire
2014A decrease of the butyrate-producing species Roseburia hominis
and Faecalibacterium prausnitzii defines dysbiosis in patients with
ulcerative colitisGut63(8)1275128310.1136/gutjnl-2013-304833
Marlicz W. & Loniewski I. (2015). The effect of exercise and
diet on gut microbial diversity. Gut, 64(3), 519-520. DOI:
10.1136/gutjnl-2014-307909.
W. Marlicz
I. Loniewski
2015The effect of exercise and diet on gut microbial
diversityGut64(3)51952010.1136/gutjnl-2014-307909
Mason, S. A., Morrison, D., McConell, G. K. & Wadley, G. D.
(2016). Muscle redox signalling pathways in exercise. Role of antioxidants.
Free Radical Biology and Medicine , 98, 29-45.
DOI: 10.1016/jfreeradbiomed.2016.02.022.
S. A. Mason
D. Morrison
G. K. McConell
G. D. Wadley
2016Muscle redox signalling pathways in exercise. Role of
antioxidantsFree Radical Biology and Medicine98294510.1016/jfreeradbiomed.2016.02.022
McAnulty, S. R., McAnulty, L., Pascoe, D. D., Gropper, S. S., Keith,
R. E., Morrow, J. D. & Gladden, L. B. (2005). Hyperthermia increases
exercise-induced oxidative stress. International Journal of Sports
Medicine, 26(03), 188-192. DOI:
10.1055/s-2004-820990.
S. R. McAnulty
L. McAnulty
D. D. Pascoe
S. S. Gropper
R. E. Keith
J. D. Morrow
L. B. Gladden
2005Hyperthermia increases exercise-induced oxidative
stressInternational Journal of Sports Medicine26(03)18819210.1055/s-2004-820990
Morales-Alamo, D. & Calbet, J. A. (2016). AMPK signaling in
skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.
Free Radical Biology and Medicine , 98, 68-77.
DOI: 10.1016/j.freeradbiomed.2016.01.012.
D. Morales-Alamo
J. A. Calbet
2016AMPK signaling in skeletal muscle during exercise: Role of
reactive oxygen and nitrogen speciesFree Radical Biology and Medicine98687710.1016/j.freeradbiomed.2016.01.012
Morris, J. G., Nevill, M. E., Boobis, L. H., Macdonald, I. A. &
Williams, C. (2005). Muscle metabolism, temperature, and function during
prolonged, intermittent, high-intensity running in air temperatures of 33 and 17
C. International Journal of Sports Medicine,
26(10), 805-814. DOI: 10.1055/s-2005-837448.
J. G. Morris
M. E. Nevill
L. H. Boobis
I. A. Macdonald
C. Williams
2005Muscle metabolism, temperature, and function during prolonged,
intermittent, high-intensity running in air temperatures of 33 and 17
CInternational Journal of Sports Medicine26(10)80581410.1055/s-2005-837448
Most, J., Penders, J., Lucchesi, M., Goossens, G. H. & Blaak, E.
E. (2017). Gut microbiota composition in relation to the metabolic response to
12-week combined polyphenol supplementation in overweight men and women.
European Journal of Clinical Nutrition, 71(9),
1040-1045. DOI: 10.1038/ejcn.2017.89.
J. Most
J. Penders
M. Lucchesi
G. H. Goossens
E. E. Blaak
2017Gut microbiota composition in relation to the metabolic response
to 12-week combined polyphenol supplementation in overweight men and
womenEuropean Journal of Clinical Nutrition71(9)1040104510.1038/ejcn.2017.89
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M.
J., Quera, R., Dijkstra, G., Harmsen, H., Faber, K. & Hermoso, M. A. (2019).
Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation
and its relevance for inflammatory bowel diseases. Frontiers in
Immunology, 10, 277. DOI:
10.3389/fimmu.2019.00277.
D. Parada Venegas
M. K. De la Fuente
G. Landskron
M. J. González
R. Quera
G. Dijkstra
H. Harmsen
K. Faber
M. A. Hermoso
2019Short chain fatty acids (SCFAs)-mediated gut epithelial and
immune regulation and its relevance for inflammatory bowel
diseasesFrontiers in Immunology1027727710.3389/fimmu.2019.00277
Passos, B. N., Lima, M. C., Sierra, A. P., Oliveira, R. A., Maciel,
J. F., Manoel, R., Rogante, J. I., Pesquero, J. B. & Cury-Boaventura, M. F.
(2019). Association of daily dietary intake and inflammation induced by marathon
race. Mediators of Inflammation, 2019: 1537274.
DOI: 10.1155/2019/1537274.
B. N. Passos
M. C. Lima
A. P. Sierra
R. A. Oliveira
J. F. Maciel
R. Manoel
J. I. Rogante
J. B. Pesquero
M. F. Cury-Boaventura
2019Association of daily dietary intake and inflammation induced by
marathon raceMediators of Inflammation201910.1155/2019/1537274
Pedersen, B. K. (2017). Anti-inflammatory effects of exercise: role
in diabetes and cardiovascular disease. European Journal of Clinical
Investigation, 47(8), 600-611. DOI:
10.1111/eci.12781.
B. K. Pedersen
2017Anti-inflammatory effects of exercise: role in diabetes and
cardiovascular diseaseEuropean Journal of Clinical Investigation47(8)60061110.1111/eci.12781
Pedersen, B. K. & Hoffman-Goetz, L. (2000). Exercise and the
immune system: regulation, integration, and adaptation. Physiological
Reviews . 80(3), 1055-1081. DOI:
10.1152/physrev.2000.80.3.1055.
B. K. Pedersen
L. Hoffman-Goetz
2000Exercise and the immune system: regulation, integration, and
adaptationPhysiological Reviews80(3)1055108110.1152/physrev.2000.80.3.1055
Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen,
L., Lek, S. H., Sodergren, E. & Weinstock, G. M. (2017). Community
characteristics of the gut microbiomes of competitive cyclists.
Microbiome, 5(1), 1-13. DOI:
10.1186/s40168-017-0320-4.
L. M. Petersen
E. J. Bautista
H. Nguyen
B. M. Hanson
L. Chen
S. H. Lek
E. Sodergren
G. M. Weinstock
2017Community characteristics of the gut microbiomes of competitive
cyclistsMicrobiome5(1)11310.1186/s40168-017-0320-4
Pingitore, A., Lima, G. P. P., Mastorci, F., Quinones, A., Iervasi,
G. & Vassalle, C. (2015). Exercise and oxidative stress: potential effects
of antioxidant dietary strategies in sports. Nutrition,
31(7-8), 916-922. DOI:
10.1016/j.nut.2015.02.005.
A. Pingitore
G. P. P. Lima
F. Mastorci
A. Quinones
G. Iervasi
C. Vassalle
2015Exercise and oxidative stress: potential effects of antioxidant
dietary strategies in sportsNutrition31(7-8)91692210.1016/j.nut.2015.02.005
Pires, W., Veneroso, C. E., Wanner, S. P., Pacheco, D. A., Vaz, G.
C., Amorim, F. T., Tonoli, C., Soares, D. & Coimbra, C. C. (2017).
Association between exercise-induced hyperthermia and intestinal permeability: a
systematic review. Sports Medicine , 47(7),
1389-1403. DOI: 10.1007/s40279-016-0654-2.
W. Pires
C. E. Veneroso
S. P. Wanner
D. A. Pacheco
G. C. Vaz
F. T. Amorim
C. Tonoli
D. Soares
C. C. Coimbra
2017Association between exercise-induced hyperthermia and intestinal
permeability: a systematic reviewSports Medicine47(7)1389140310.1007/s40279-016-0654-2
Radak, Z., Ishihara, K., Tekus, E., Varga, C., Posa, A., Balogh, L.,
Boldogh, I. & Koltai, E. (2017). Exercise, oxidants, and antioxidants change
the shape of the bell-shaped hormesis curve. Redox Biology,
2, 285-290. DOI: 10.1016/j.redox.2017.02.015.
Z. Radak
K. Ishihara
E. Tekus
C. Varga
A. Posa
L. Balogh
I. Boldogh
E. Koltai
2017Exercise, oxidants, and antioxidants change the shape of the
bell-shaped hormesis curveRedox Biology228529010.1016/j.redox.2017.02.015
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.
A. D., Gasbarrini, A. & Mele, M. C. (2019). What is the healthy gut
microbiota composition? A changing ecosystem across age, environment, diet, and
diseases. Microorganisms, 7(1), 14. DOI:
10.3390/microorganisms7010014.
E. Rinninella
P. Raoul
M. Cintoni
F. Franceschi
G. A. D. Miggiano
A. Gasbarrini
M. C. Mele
2019What is the healthy gut microbiota composition? A changing
ecosystem across age, environment, diet, and diseasesMicroorganisms7(1)141410.3390/microorganisms7010014
Redondo, R. B., Fernández, C. J. C., Galván, C. D. T., del Valle Soto, M., Bonafonte, L. F., Gabarra, A. G., Gaztañaga, T., Manonelles, P., Manuz, B., Palacios Gil de Antuñano, N. & Villegas, J. A. V. (2019). Suplementos nutricionales para el deportista. Ayudas ergogénicas en el deporte-2019. Documento de consenso de la Sociedad Española de Medicina del Deporte. Archivos de medicina del deporte: revista de la Federación Española de Medicina del Deporte y de la Confederación Iberoamericana de Medicina del Deporte, 7-83.
R. B. Redondo
C. J. C. Fernández
C. D. T. Galván
M. del Valle Soto
L. F. Bonafonte
A. G. Gabarra
T. Gaztañaga
P. Manonelles
B. Manuz
N. Palacios Gil de Antuñano
J. A. V. Villegas
2019Suplementos nutricionales para el deportista. Ayudas ergogénicas en el deporte-2019. Documento de consenso de la Sociedad Española de Medicina del DeporteArchivos de medicina del deporte: revista de la Federación Española de Medicina del Deporte y de la Confederación Iberoamericana de Medicina del Deporte783
Sanchis, F., Pareja, H., Gomez, M. C., Candel, J., Lippi, G.,
Salvagno, G. L. & Vina, J. (2015). Allopurinol prevents cardiac and skeletal
muscle damage in professional soccer players. Scandinavian Journal of
Medicine & Science in Sports, 25(1), e110-e115.
DOI: 10.1111/sms.12213.
F. Sanchis
H. Pareja
M. C. Gomez
J. Candel
G. Lippi
G. L. Salvagno
J. Vina
2015Allopurinol prevents cardiac and skeletal muscle damage in
professional soccer playersScandinavian Journal of Medicine & Science in Sports25(1)e110e11510.1111/sms.12213
Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A.,
Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T.,
Yang, Z., Hattab, M.W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G.
M. & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies
a performance-enhancing microbe that functions via lactate metabolism.
Nature Medicine, 25(7), 1104-1109. DOI:
10.1038/s41591-019-0485-4.
J. Scheiman
J. M. Luber
T. A. Chavkin
T. MacDonald
A. Tung
L. D. Pham
M. C. Wibowo
R. C. Wurth
S. Punthambaker
B. T. Tierney
Z. Yang
M.W. Hattab
J. Avila-Pacheco
C. B. Clish
S. Lessard
G. M. Church
A. D. Kostic
2019Meta-omics analysis of elite athletes identifies a
performance-enhancing microbe that functions via lactate
metabolismNature Medicine25(7)1104110910.1038/s41591-019-0485-4
Sies, H. (2015). Oxidative stress: a concept in redox biology and
medicine. Redox Biology , 4, 180-183. DOI:
10.1016/j.redox.2015.01.002.
H. Sies
2015Oxidative stress: a concept in redox biology and
medicineRedox Biology418018310.1016/j.redox.2015.01.002
Singh, A., Yau, Y. F., Leung, K. S., El-Nezami, H. & Lee, J. C.
Y. (2020). Interaction of polyphenols as antioxidant and anti-Inflammatory
compounds in brain-liver-gut axis. Antioxidants,
9(8), 669. DOI: 10.3390/antiox9080669.
A. Singh
Y. F. Yau
K. S. Leung
H. El-Nezami
J. C. Y. Lee
2020Interaction of polyphenols as antioxidant and anti-Inflammatory
compounds in brain-liver-gut axisAntioxidants9(8)66966910.3390/antiox9080669
So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J.
T., Shanahan, E., Staudacher, H. & Campbell, K. L. (2018). Dietary fiber
intervention on gut microbiota composition in healthy adults: a systematic
review and meta-analysis. The American Journal of Clinical
Nutrition , 107(6), 965-983. DOI:
10.1093/ajcn/nqy041.
D. So
K. Whelan
M. Rossi
M. Morrison
G. Holtmann
J. T. Kelly
E. Shanahan
H. Staudacher
K. L. Campbell
2018Dietary fiber intervention on gut microbiota composition in
healthy adults: a systematic review and meta-analysisThe American Journal of Clinical Nutrition107(6)96598310.1093/ajcn/nqy041
Starkov, A. A. (2008). The role of mitochondria in reactive oxygen
species metabolism and signaling. Annals of the New York Academy of
Sciences, 1147, 37-52. DOI:
10.1196/annals.1427.015.
A. A. Starkov
2008The role of mitochondria in reactive oxygen species metabolism
and signalingAnnals of the New York Academy of Sciences1147375210.1196/annals.1427.015
Stuempfle, K. J., Hoffman, M. D. & Hew, T. (2013). Association
of gastrointestinal distress in ultramarathoners with race diet.
International Journal of Sport Nutrition and Exercise
Metabolism, 23(2), 103-109. DOI: 10.1123/
ijsnem.23.2.103.
K. J. Stuempfle
M. D. Hoffman
T. Hew
2013Association of gastrointestinal distress in ultramarathoners with
race dietInternational Journal of Sport Nutrition and Exercise
Metabolism23(2)10310910.1123/ ijsnem.23.2.103
Thomas, J. P., Parker, A., Divekar, D., Pin, C. & Watson, A.
(2018). PTU-066 The gut microbiota influences intestinal epithelial
proliferative potential. Gut, 67(1), A1-A304. DOI:
10.1136/gutjnl-2018-BSGAbstracts.407.
J. P. Thomas
A. Parker
D. Divekar
C. Pin
A. Watson
2018PTU-066 The gut microbiota influences intestinal epithelial
proliferative potentialGut67(1)A1A30410.1136/gutjnl-2018-BSGAbstracts.407
Ticinesi, A., Lauretani, F., Tana, C., Nouvenne, A., Ridolo, E.
& Meschi, T. (2019). Exercise and immune system as modulators of intestinal
microbiome: implications for the gut-muscle axis hypothesis. Exercise
Immunology Review, 25, 84-95.
A. Ticinesi
F. Lauretani
C. Tana
A. Nouvenne
E. Ridolo
T. Meschi
2019Exercise and immune system as modulators of intestinal
microbiome: implications for the gut-muscle axis hypothesisExercise Immunology Review258495
Tierrablanca, I. E., Luna, F., Guzmán, S. H., Ramírez, J. &
Aguilar, H. (2019). Daily intake of a bean-fiber fortified bar reduces oxidative
stress. Archivos Latinoamericanos de Nutrición,
69(2), 80-88. DOI: 10.37527/2019.69.2.002.
I. E. Tierrablanca
F. Luna
S. H. Guzmán
J. Ramírez
H. Aguilar
2019Daily intake of a bean-fiber fortified bar reduces oxidative
stressArchivos Latinoamericanos de Nutrición69(2)808810.37527/2019.69.2.002
Trevisi, P., De Filippi, S., Minieri, L., Mazzoni, M., Modesto, M.,
Biavati, B. & Bosi, P. (2008). Effect of fructo-oligosaccharides and
different doses of Bifidobacterium animalis in a weaning diet
on bacterial translocation and Toll-like receptor gene expression in pigs.
Nutrition, 24(10), 1023-1029. DOI:
10.1016/j.nut.2008.04.008.
P. Trevisi
S. De Filippi
L. Minieri
M. Mazzoni
M. Modesto
B. Biavati
P. Bosi
2008Effect of fructo-oligosaccharides and different doses of
Bifidobacterium animalis in a weaning diet on bacterial translocation and
Toll-like receptor gene expression in pigsNutrition24(10)1023110210.1016/j.nut.2008.04.008
Vitale, K. & Getzin, A. (2019). Nutrition and supplement update
for the endurance athlete: review and recommendations.
Nutrients, 11(6), 1289. DOI:
10.3390/nu11061289.
K. Vitale
A. Getzin
2019Nutrition and supplement update for the endurance athlete: review
and recommendationsNutrients11(6)1289128910.3390/nu11061289
Wu, I. C., Chang, H. Y., Hsu, C. C., Chiu, Y. F., Yu, S. H., Tsai, Y
F., Shen, S., Kuo, K., Chen, C., Liu, K., Lee, M. & Hsiung, C. A. (2013).
Association between dietary fiber intake and physical performance in older
adults: a nationwide study in Taiwan. PLoS One,
8(11), e80209. DOI:
10.1371/journal.pone.0080209.
I. C. Wu
H. Y. Chang
C. C. Hsu
Y. F. Chiu
S. H. Yu
Y F. Tsai
S. Shen
K. Kuo
C. Chen
K. Liu
M. Lee
C. A. Hsiung
2013Association between dietary fiber intake and physical performance
in older adults: a nationwide study in TaiwanPLoS One8(11)e8020910.1371/journal.pone.0080209
Zhu, M. J. (2018). Dietary Polyphenols, Gut Microbiota, and
Intestinal Epithelial Health. Nutritional and Therapeutic Interventions
for Diabetes and Metabolic Syndrome. 24, 295-314. DOI:
10.1016/B978-0-12-812019-4.00024-6.
M. J. Zhu
2018Dietary Polyphenols, Gut Microbiota, and Intestinal Epithelial
HealthNutritional and Therapeutic Interventions for Diabetes and Metabolic
Syndrome2429531410.1016/B978-0-12-812019-4.00024-6
TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS, Volumen 26, 2023, es una publicación editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, Ciudad de México, México, a través de la Facultad de Estudios Superiores Zaragoza, Campus I, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, Teléfono: 55.56.23.05.27, http://tip.zaragoza.unam.mx, Correo electrónico revistatip@yahoo.com, Editor responsable: Dra. Martha Asunción Sánchez Rodríguez, Certificado de Reserva de Derechos al Uso Exclusivo del Título No. 04-2014-062612263300-203, ISSN impreso: 1405-888X, ISSN electrónico: 2395-8723, otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número Claudia Ahumada Ballesteros, Facultad de Estudios Superiores Zaragoza, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, fecha de la última modificación, 27 de febrero de 2023.
Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo de la institución.