Abstract
Two-component systems (TCS) are the primary signal transduction system used by bacteria and microorganisms to detect changes in the environment and generate an adaptive response. The basic mechanism of operation of these systems lies in phosphorylation and dephosphorylation reactions between a sensor histidine kinase (SK) and its cognate response regulator (RR). However, the involvement of accessory proteins and cofactors in regulating the activity of TCS, as well as their role as intermediaries in cross-regulation between different TCS, allows us to visualize the functionality of these systems as complex signaling networks that operate together to effectively respond to the organism’s physiological requirements. This review discusses some of the regulatory mechanisms that can be adopted by TCS; using the BarA/UvrY TCS and orthologs as a model; in which, although a high degree of homology is shared between organisms, a great versatility in their regulatory mechanisms is observed as a result of the particular conditions each organism encounters.
References
Albanesi, D., Martin, M., Trajtenberg, F., Mansilla, M. C., Haouz, A., Alzari, P. M., de Mendoza, D. & Buschiazzo, A. (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc. Natl. Acad. Sci. USA, 106(38),16185–16190. DOI: 10.1073/pnas.0906699106
Alm, E., Huang, K. & Arkin, A. (2006). The evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation. PLoS Comput. Biol., 2(11), e143. DOI: 10.1371/journal.pcbi.0020143
Álvarez, A. & Georgellis, D. (2016). Características y funcionamiento de los Sistemas de Dos Componentes de organismos procariotas y eucariotas. Química Viva, 15(3), 11-27. http://www.quimicaviva.qb.fcen.uba.ar/v15n3/E0049.pdf
Álvarez, A., Rodriguez, C., Gonzalez Chavez, R. & Georgellis, D. (2021). The Escherichia coli two-component signal sensor BarA binds protonated acetate via a conserved hydrophobic-binding pocket. J. Biol. Chem., 297(6), 101383. DOI: 10.1016/j.jbc.2021.101383
Bordi, C., Lamy, M. C., Ventre, I., Termine, E., Hachani, A., Fillet, S., Roche, B., Blevers, S., Mejean, V., Lazdunski, A. & Filloux, A. (2010). Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol. Microbiol., 76(6), 1427–1443. DOI: 10.1111/j.1365-2958.2010.07146.x
Buelow, D. & Raivio, T. (2010). Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol. Microbiol., 75(3), 547-566. DOI: 10.1111/j.1365-2958.2009.06982.x
Burbulys, D., Trach, K. A. & Hoch, J. A. (1991). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64(3), 545–552. DOI: 10.1016/0092-8674(91)90238-t
Camacho, M. I., Georgellis, D. & Álvarez, A. (2016). El circuito regulatorio BarA/UvrY-CsrA en Escherichia coli y sus homólogos en las y-proteobacterias. TIP Revista Especializada en Ciencias Químico-Biológicas, 19(1), 15-23. DOI.org/10.1016/j.recqb.2016.02.002
Camacho, M. I., Álvarez, A. F., Chavez, R. G., Romeo, T., Merino, E. & Georgellis, D. (2015). Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J. Bacteriol., 197(5), 983-991. DOI: 10.1128/JB.02325-14
Castañeda, M., Sanchez, J., Moreno, S., Nuñez, C. & Espin, G. (2001). The global regulators GacA and sigma (S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J. Bacteriol., 183(23), 6787-6793. DOI: 10.1128/JB.183.23.6787-6793.2001
Chambonnier, G., Roux, L., Redelberger, D., Fadel, F., Filloux, A., Sivaneson, M., Bentzamann, S. & Bordi, C. (2016) The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet., 12(5), e1006032. DOI:10.1371/journal.pgen.1006032
Chávez, R., Alvarez, F., Romeo, T. & Georgellis, D. (2010). The physiological stimulus for the BarA sensor kinase. J. Bacteriol., 192(7), 2009-2012. DOI: 10.1128/JB.01685-09
Contreras, F. U., Camacho, M. I., Pannuri, A., Romeo, T., Alvarez, A. & Georgellis, D. (2023). Spatiotemporal regulation of the BarA/UvrY two-component signaling system. J. Biol. Chem., 299(6), 1-11. DOI: 10.1016/j.jbc.2023.104835
Donnenberg, M. & Kaper, J. (1991). Construction of a deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Inmmun., 59(12), 4310-4317. DOI: 10.1128/iai.59.12.4310-4317.1991
Eguchi, Y., Itou, J., Yamane, M., Demizu, R., Yamato, F., Okada, A., Mori, H., Kato, A. & Utsumi, R. (2007). B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc. Natl. Acad. Sci. USA, 104(47), 18712-7. DOI: 10.1073/pnas.0705768104
Ferris, H. U., Dunin-Horkawicz, S., Mondéjar, L. G., Hulko, M., Hantke, K., Martin, J., Schultz, J. E., Zeth, K., Lupas, A. N. & Coles, M. (2011). The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure, 19(3), 378-85. DOI: 10.1016/j.str.2011.01.006
Galperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol., 5(35). DOI: 10.1186/1471-2180-5-35
Galperin, M. Y. (2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol., 188(12), 4169-4182. DOI: 10.1128/JB.01887-05
Galperin, M. Y. (2010). Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol., 13(2), 150-159. DOI: 10.1016/j.mib.2010.01.005
Gao, R. & Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology, 63, 133–154. DOI: 10.1146/annurev.micro.091208.073214
Georgellis, D., Kwon, O. & Lin, E. C. (2001). Quinones as the redox signal for the Arc two-Component system of bacteria. Science, 292(5525), 2314-6. DOI:10.1126/science.1059361
Georgellis, D., Lynch, A. S. & Lin, E. C. (1997). In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J. Bacteriol., 179(17), 5429–5435. DOI:10.1128/jb.179.17.5429-5435.1997
Georgellis, D., Kwon, O., De Wulf, P. & Lin, E. C. (1998). Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem., 273(49), 32864–32869. DOI: 10.1126/science.1059361
Goodman, A., Merighi, M., Hyodo, M., Veentre, I., Filloux, A. & Lory, S. (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in bacterial pathogens. Genes Dev., 23, 249-2559. DOI: 10.1101/gad.1739009
Hsu, J. L., Chen, H. C., Peng, H. L. & Chang, H. Y. (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J. Biol. Chem., 283(5), 9933–9944. DOI: 10.1074/jbc.M708836200
Hutton, M. L., D’Costa, K., Rossiter, A. E., Wang, L., Turner, L., Steer, D. L., Masters, S. L., Croker, B. A., Kaparakis-Liaskos, M. & Ferrero, R. L. (2017). A Helicobacter pylori homolog of eukaryotic flotillin is involved in cholesterol accumulation, epithelial cell responses and host colonization. Front. Cell Infect. Microbiol., 7(219). DOI: 10.3389/fcimb.2017.00219
Ishige, K., Nagasawa, S., Tokishita, S. & Mizuno, T. (1994). A novel device of bacterial signal transducers. EMBO J., 13(21), 5195–5202. DOI: 10.1002/j.1460-2075.1994.tb06850.x
Ishii, E. & Eguchi, Y. (2021). Diversity in sensing and signaling of bacterial sensor histidine kinases. Biomolecules, 11(1524). DOI: 10.3390/biom11101524
Kato, M., Mizuno, T., Shimizu, T. & Hakoshima, T. (1997). Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell, 88(5), 717-723. DOI: 10.1016/s0092-8674(00)81914-5
Kenney, L. J. (2010) How important is the phosphatase activity of sensor kinases? Curr. Opin. Microbiol., 13(2), 168–176. DOI: 10.1016/j.mib.2010.01.013
Kofoid, E. C. & Parkinson, J. S. (1988) Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. U. S. A., 85(14), 4981–4985. DOI: 10.1073/pnas.85.14.4981
Kong, W., Chen, L., Zhao, J., Shen, T., Surette, M. G., Shen, L. & Duan, K. (2013). Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol. Microbiol., 88(4), 784–97. DOI: 10.1111/mmi.12223
Langhorst, M. F., Reuter, A. & Stuermer, C. A. (2005). Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell. Mol. Life Sci., 62(19-20), 2228–2240. DOI: 10.1007/s00018-005-5166-4
Lapouge, K., Schubert, M., Allain, F. & Haas, D. (2007). Gac/Rsm signal transduction pathway of y-proteobacteria: from RNA recognition to regulation of social behavior. Mol. Microbiol., 67(2), 241-253. DOI: 10.1111/j.1365-2958.2007.06042.x
Lawhon, S. D., Murer, R., Suyemoto, M. & Altier, C. (2002). Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol., 46(5), 1451-1464. DOI: 10.1046/j.1365-2958.2002.03268.x
Lippa, A. M. & Goulian, M. (2009). Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet., 5(12), e1000788. DOI: 10.1371/journal.pgen.1000788
Lopez, D. & Koch, G. (2017). Exploring functional membrane microdomains in bacteria: an overview. Curr. Opin. Microbiol., 36, 76–84. DOI: 10.1016/j.mib.2017.02.001
Malpica, R., Franco, B., Rodríguez, C., Kwon, O. & Georgellis, D. (2004). Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. U S A, 101(36), 13318–13323. DOI: 10.1073/pnas.0403064101
Matsubara, M. & Mizuno, T. (1999). EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci. Biotechnol. Biochem., 63(2), 408-414. DOI: 10.1271/bbb.63.408
Mizuno, T. (1997). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res., 46(2), 161–168. DOI: 10.1093/dnares/4.2.161
Moolenaar, G. F., van Sluis, C. A., Backendorf, C. & van de Putte, P. (1987). Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res., 15(10), 4273-4289. DOI: 10.1093/nar/15.10.4273
Mukhopadhyay, S., Audia, J. P., Roy, R. N. & Schellhorn, H. E. (2000). Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol. Microbiol., 37(2), 371–381. DOI: 10.1046/j.1365-2958.2000.01999.x
Nagasawa, S., Tokishita, S, Aiba, H. & Mizuno, T. (1992). A novel sensor regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol. Microbiol., 6(6), 799–807. DOI: 10.1111/j.1365-2958.1992.tb01530.x
Nixon, B. T., Ronson, C. W. & Ausubel, F. M. (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 83(20), 7850–7854. DOI: 10.1073/pnas.83.20.7850
O’Malley, M. R., Chien, C. F., Peck, S. C., Lin, N. C. & Anderson, J. C. (2020). A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Pathol., 21(1), 139-144. DOI: 10.1111/mpp.12876
OMS. 2017. Lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos.https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded#:~:text=Entre%20tales%20bacterias%20se%20incluyen,la%20corriente%20sangu%C3%ADnea%20y%20neumon%C3%ADas.
O’Toole, G. & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30(2), 295-304. DOI: 10.1046/j.1365-2958.1998.01062.x
Peña-Sandoval, G. R., Kwon, O. & Georgellis, D. (2005). Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J. Bacteriol., 187(9), 3267–3272. DOI: 10.1128/JB.187.9.3267-3272.2005
Pernestig, A. K., Melefors, O. & Georgellis, D. (2001). Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J. Biol. Chem., 276(1), 225-231. DOI: 10.1074/jbc.M001550200
Pourciau, C., Lai, Y. J., Gorelik, M., Babitzke, P. & Romeo, T. (2020). Diverse mechanisms and circuitry for global regulation by the RNA-binding protein CsrA. Front. Microbiol., 11, 601352. DOI: 10.3389/fmicb.2020.601352
Saita, E., Albanesi, D. & de Mendoza, D. (2016). Sensing membrane thickness: Lessons learned from cold stress. Biochim. Biophys. Acta, 1861, 837-846. DOI: 10.1016/j.bbalip.2016.01.003
Salvail, H. & Groisman, E. A. (2020) The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLoS Genet., 16(5), e1008722. DOI: 10.1371/journal.pgen.1008722
Simons, K. & Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol., 1(1), 31–39. DOI: 10.1038/35036052
Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: A system-level analysis. PLoS Biol., 3(10), e334. DOI: 10.1371/journal.pbio.0030334
Steiner, B. D., Eberly, A. R., Hurst, M. N., Zhang, E. W., Green, H. D., Behr, S., Jung, K. & Hadjifrangiskou, M. (2018). Evidence of cross-regulation in two closely related pyruvate-sensing systems in uropathogenic Escherichia coli. J. Membr. Biol., 251(1), 65-74. DOI: 10.1007/s00232-018-0014-2
Stock, A. M., Robinson, V. L. & Goudreau, P. N. (2000). Two-component signal transduction. Annu. Rev. Biochem., 69, 183–215. DOI: 10.1146/annurev.biochem.69.1.183
Suzuki, K., Wang, X., Weilbacher, T., Pernestig, A. K., Melefors, O., Georgellis, D., Babitzke, P. & Romeo, T. (2002). Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol., 184(18), 5130–5140. DOI: 10.1128/JB.184.18.5130-5140.2002
Takeuchi, K., Kiefer, P., Reimmann, C., Keel, C., Dubuis, C., Rolli, J., Vorholt, J. A. & Haas, D. (2009). Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J. Biol. Chem., 284(50), 34976-85. DOI: 10.1074/jbc.M109.052571
Taylor, B. L. & Zhulin, I. B. (1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63(2), 479-506. DOI: 10.1128/MMBR.63.2.479-506.1999
Terán-Melo, J., Rodríguez-Rangel, C., Georgellis, D. & Alvares, A. (2019). Mecanismo de autofosforilación y transfosforilación en sistemas de dos componentes bacterianos. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1-11. DOI: 10.22201/fesz.23958723e.2019.0.162
Toledo, A., Crowley, J. T., Coleman J. L., Larocca T. J., Chiantia S., London E. & Benach, J. L. (2014). Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. mBio, 5(2). DOI: 10.1128/mBio.00899-14
Uhl, M. A. & Miller, J. F. (1996). Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J., 15(5), 1028–1036. DOI: 10.1002/j.1460-2075.1996.tb00440.x
Wang, X., Dubey, A. K., Suzuki, K., Baker, C. S., Babitzke, P. & Romeo, T. (2005). CsrA post-transcriptionally Repress pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesion of Escherichia coli. Mol. Microbiol., 56(6), 1648-1663. DOI: 10.1111/j.1365-2958.2005.04648.x
Wang, Q., Zhao, Y., McClelland, M. & Harshey, R. M. (2007). The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J. Bacteriol., 189(23), 8447–57. DOI: 10.1128/JB.01198-07
Wei, C., Tsai, Y., Tsai, S., Lin, C., Chang, C., Lu, C., Huang, H. & Lai, H. (2017). Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochemical and Biophysical Research Communications, 489(1), 70-75. DOI: 10.1016/j.bbrc.2017.05.077
Wessel, A. K., Yoshii, Y., Reder, A., Boudjemaa, R., Szczesna, M., Betton, J. M., Bernal-Bayard, J., Beloin, C., Lopez, D., Völker, U. & Ghigo, J. M. (2023). Escherichia coli SPFH membrane microdomain proteins HflKC contribute to aminoglycoside and oxidative stress tolerance. Microbiol. Spectr., 11(4), e0176723. DOI: 10.1128/spectrum.01767-23
West, A. H. & Stock, A. M. (2001). Histidine kinases and response regulator proteins in two- component signaling systems. Trends Biochem. Sci., 26(6), 369-376. DOI: 10.1016/s0968-0004(01)01852-7
Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R. & Ishihama, A. (2005). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem., 280(2), 1448-1456. DOI: 10.1074/jbc.M410104200
Zere, T. R., Vakulskas, C. A., Leng, Y., Pannuri, A., Potts, A. H., Dias, R., Tang, D., Kolaczkowski, B., Georgellis, D., Ahmer, B. M. & Romeo. T. (2015). Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS One, 10(12), e0145035. DOI: 10.1371/journal.pone.0145035
Zhang, J. & Normarck, S. (1996). Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science, 273(5279), 1234-1236. DOI: 10.1126/science.273.5279.1234
Zschiedrich, C., Keidel, V. & Szurmant, H. (2016). Molecular mechanisms of two-component signal transduction. J. Mol. Biol., 428(19), 3752–3775. DOI: 10.1016/j.jmb.2016.08.003
TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.