ISSN: 1405-888X ISSN-e: 2395-8723
Yeasts from extreme environments: adaptations of invisible survivors
Nombre científico: Latrodectus mactans. Nombre común: "viuda negra”. Nombre del fotógrafo: pendiente, por confirmar.
PDF (Español (España))

Keywords

adaptation to stress
cosmopolitan yeasts
resilient microorganisms
extreme environments

How to Cite

Rosas-Paz, M., Martínez-Castillo, B., Orozco-González, M., & González, J. (2025). Yeasts from extreme environments: adaptations of invisible survivors. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.743

Abstract

Yeasts are unicellular fungi commonly used in the production of bread, beer, and wine. However, they also fulfill crucial ecological roles in nature. In ecosystems, these microorganisms contribute to the decomposition of organic matter and nutrient recycling. Moreover, their remarkable adaptive capacity, shaped by evolutionary processes, enables them to survive in virtually any habitat on Earth, including extreme environments such as polar regions, sun-exposed deserts, and even outer space. This review article explores some of the strategies that enable yeasts to thrive under harsh conditions, such as cold, ultraviolet radiation, and other environmental stressors. An analysis of their versatility underscores their impact on the circular economy and their broader ecological significance.

https://doi.org/10.22201/fesz.23958723e.2025.743
PDF (Español (España))

References

Ali, S. S., Sun, J., Koutra, E., El-Zawawy, N., Elsamahy, T. & El-Shetehy, M. (2021). Construction of a novel cold-adapted oleaginous yeast consortium valued for textile azo dye wastewater processing and biorefinery. Fuel, 285, 119050. https://doi.org/10.1016/j.fuel.2020.119050

Alkalbani, N. S., Osaili, T. M., Al-Nabulsi, A. A., Olaimat, A. N., Liu, S.-Q., Shah, N. P., Apostolopoulos, V. & Ayyash, M. M. (2022). Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. Journal of Fungi, 8(4), 365. https://doi.org/10.3390/jof8040365

Andreu C. & del Olmo M. (2024) Biocatalysis with Unconventional Yeasts. Catalysts, 14(11), 767. https://doi.org/10.3390/catal14110767

Anwar, H., Iftikhar, A., Muzaffar, H., Almatroudi, A., Allemailem, K. S., Navaid, S., Saleem, S. & Khurshid, M. (2021). Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. BioMed Research International, 2021(5575245), 9. https://doi.org/10.1155/2021/5575245

Aouizerat, T., Gutman, I., Paz, Y., Maeir, A. M., Gadot, Y., Gelman, D., Szitenberg, A., Drori, E., Pinkus, A., Schoemann, M., Kaplan, R., Ben-Gedalya, T., Coppenhagen-Glazer, S., Reich, E., Saragovi, A., Lipschits, O., Klutstein, M. & Hazan, R. (2019). Isolation and Characterization of Live Yeast Cells from Ancient Vessels as a Tool in Bio-Archaeology. mBio, 10(2), 10.1128/mbio.00388-19. https://doi.org/10.1128/mbio.00388-19

Arthur, H. & Watson, K. (1976). Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. Journal of Bacteriology, 128(1), 56-68. https://doi.org/10.1128/jb.128.1.56-68.1976

Baedke, J., Fábregas-Tejeda, A. & Nieves Delgado, A. (2020). The holobiont concept before Margulis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 334(3), 149-155. https://doi.org/10.1002/jez.b.22931

Boekhout, T., Amend, A. S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., Robert, V., Tan, C. S., Turchetti, B., Vu, D., Wang, Q.-M. & Yurkov, A. (2022). Trends in yeast diversity discovery. Fungal Diversity, 114(1), 491-537. https://doi.org/10.1007/s13225-021-00494-6

Bradford, L. L. & Ravel, J. (2017). The vaginal mycobiome: A contemporary perspective on fungi in women’s health and diseases. Virulence, 8(3), 342-351. https://doi.org/10.1080/21505594.2016.1237332

Brown, A. J. P., Cowen, L. E., di Pietro, A. & Quinn, J. (2017). Stress Adaptation. Microbiology Spectrum, 5(4), 10.1128/microbiolspec.funk-0048-2016. https://doi.org/10.1128/microbiolspec.funk-0048-2016

Buratti, S., Girometta, C. E., Baiguera, R. M., Barucco, B., Bernardi, M., De Girolamo, G., Malgaretti, M., Oliva, D., Picco, A. M. & Savino, E. (2022) Fungal Diversity in Two Wastewater Treatment Plants in North Italy. Microorganisms, 10(6),1096. https://doi.org/10.3390/microorganisms10061096

Buzzini, P. & Margesin, R. (Eds.). (2014). Cold-adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance. Springer nature, New York. https://doi.org/10.1007/978-3-642-39681-6

Buzzini, P., Turchetti, B. & Yurkov, A. (2018). Extremophilic yeasts: the toughest yeasts around? Yeast, 35(8), 487-497. https://doi.org/10.1002/yea.3314

de Marañón, I. M., Chaudanson, N., Joly, N. & Gervais, P. (1999). Slow heat rate increases yeast thermotolerance by maintaining plasma membrane integrity. Biotechnology and Bioengineering, 65(2), 176-181. https://doi.org/10.1002/(SICI)1097-0290(19991020)65:2<176::AID-BIT7>3.0.CO;2-5

Choudhary, J., Singh, S. & Nain, L. (2016). Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology, 21, 82-92.

Dias, B., Lopes, M., Ramôa, R., Pereira, A. S. & Belo, I. (2021). Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. Energies, 14(3), Article 3. https://doi.org/10.3390/en14030640

Dunn, B. & Stambuk, B. U. (2022). Yeasts: From the Laboratory to Bioprocesses. En Yeasts: From Nature to Bioprocesses (pp. 396-430). Bentham Science Publishers. https://www.benthamdirect.com/content/books/9789815051063.chap14

Fiers, W. D., Gao, I. H. & Iliev, I. D. (2019). Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Current Opinion in Microbiology, 50, 79-86. https://doi.org/10.1016/j.mib.2019.09.010

Garg, A., Sanchez, A. M., Miele, M., Schwer, B. & Shuman, S. (2023). Cellular responses to long-term phosphate starvation of fission yeast: Maf1 determines fate choice between quiescence and death associated with aberrant tRNA biogenesis. Nucleic Acids Research, 51(7), 3094-3115.

Genç, Y., Bardakci, H., Yücel, Ç., Karatoprak, G. Ş., Küpeli Akkol, E., Hakan Barak, T. & Sobarzo-Sánchez, E. (2020). Oxidative stress and marine carotenoids: Application by using nanoformulations. Marine Drugs, 18(8), 423.

González, J., Romero-Aguilar, L., Matus-Ortega, G., Pardo, J. P., Flores-Alanis, A., Segal-Kischinevzky, C., González, J., Romero-Aguilar, L., Matus-Ortega, G., Pardo, J. P., Flores-Alanis, A. & Segal-Kischinevzky, C. (2020). Levaduras adaptadas al frío: el tesoro biotecnológico de la Antártica. TIP Revista Especializada en Ciencias Químico-Biológicas, Vol. 23, 1-14. https://doi.org/10.22201/fesz.23958723e.2020.0.267

Gónzalez, J., Villarreal-Huerta, D., Rosas-Paz, M. & Segal-Kischinevzky, C (2025). Biotechnological applications of yeasts under extreme conditions. En: Extremophilic Yeasts. Buzzini, P. & Turchetti, B. Springer Nature. Switzerland

Grice, E. A. & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9(4), 244-253. https://doi.org/10.1038/nrmicro2537

Hallen-Adams, H. E. & Suhr, M. J. (2017). Fungi in the healthy human gastrointestinal tract. Virulence, 8(3), 352-358. https://doi.org/10.1080/21505594.2016.1247140

Hammond, T. G. & Birdsall, H. H. (2022). Yeast in Space. En Y. V. Pathak, M. Araújo dos Santos & L. Zea (Eds.), Handbook of Space Pharmaceuticals (pp. 717-732). Springer International Publishing. Switzerland. https://doi.org/10.1007/978-3-030-05526-4_8

Hoffman, S. M., Alvarez, M., Alfassi, G., Rein, D. M., Garcia-Echauri, S., Cohen, Y. & Avalos, J. L. (2021). Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnology for Biofuels, 14(1), 157. https://doi.org/10.1186/s13068-021-02008-7

Igwegbe, C. A., Obiora-Okafo, I. A., Iwuozor, K. O., Ghosh, S., Kurniawan, S. B., Rangabhashiyam, S., Kanaoujiya, R. & Ighalo, J. O. (2022). Treatment technologies for bakers’ yeast production wastewater. Environmental Science and Pollution Research, 29(8), 11004-11026. https://doi.org/10.1007/s11356-021-17992-4

Kadkhodaei, S., Hatefi, A., Pedramnia, S., Godini, E., Khalili-Samani, S., Saniee, P., Sarrafnejad, A., Salmanian, A.-H., Sotoudeh, M., Graham, D. Y., Malekzadeh, R. & Siavoshi, F. (2024). Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. Yeast, 41(11-12), 645-657. https://doi.org/10.1002/yea.3983

Kim, H. J., Lee, J. H., Do, H. & Jung, W. (2014). Production of Antifreeze Proteins by Cold-Adapted Yeasts. En P. Buzzini y R. Margesin (Eds.), Cold-adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance (pp. 259-280). Springer, Berlin. https://doi.org/10.1007/978-3-642-39681-6_12

Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I. & Bryś, J. (2019). Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater. Applied Biochemistry and Biotechnology, 189(2), 589-607. https://doi.org/10.1007/s12010-019-03023-z

Kreusch, M. G. & Duarte, R. T. D. (2021). Photoprotective compounds and radioresistance in pigmented and non-pigmented yeasts. Applied Microbiology and Biotechnology, 105(9), 3521-3532. https://doi.org/10.1007/s00253-021-11271-5

Lahue, C., Madden, A., Dunn, R. R. & Smukowski Heil, C. (2020). History and Domestication of Saccharomyces cerevisiae in Bread Baking. Frontiers in Genetics, 11, 584718. https://doi.org/10.3389/fgene.2020.584718

Leach, M. D., Farrer, R. A., Tan, K., Miao, Z., Walker, L. A., Cuomo, C. A., Wheeler, R. T., Brown, A. J. P., Wong, K. H. & Cowen, L. E. (2016). Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nature Communications, 7(1), 11704. https://doi.org/10.1038/ncomms11704

Leach, M. D., Klipp, E., Cowen, L. E. & Brown, A. J. P. (2012). Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature Reviews Microbiology, 10(10), 693-704. https://doi.org/10.1038/nrmicro2875

Lee, J. H., Park, A. K., Do, H., Park, K. S., Moh, S. H., Chi, Y. M. & Kim, H. J. (2012). Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*. Journal of Biological Chemistry, 287(14), 11460-11468. https://doi.org/10.1074/jbc.M111.331835

Leo, P. & Onofri, S. (2023). Yeasts in the Era of Astrobiological Research. Journal of the Indian Institute of Science, 103(3), 699-709. https://doi.org/10.1007/s41745-023-00378-5

Li, Z., Li, C., Cheng, P. & Yu, G. (2022). Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon, 8(11), e11505. https://doi.org/10.1016/j.heliyon.2022.e11505.

Lima, R., Ribeiro, F. C., Colombo, A. L. & de Almeida, J. N. (2022). The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. Frontiers in Fungal Biology, 3, 957021. https://doi.org/10.3389/ffunb.2022.957021

Mierzejewska, J., Kowalska, P., Marlicka, K., Dworakowska, S., Sitkiewicz, E., Trzaskowski, M., Głuchowska, A., Mosieniak, G. & Milner-Krawczyk, M. (2023). Exploring Extracellular Vesicles of Probiotic Yeast as Carriers of Biologically Active Molecules Transferred to Human Intestinal Cells. International Journal of Molecular Sciences, 24(14), 11340. https://doi.org/10.3390/ijms241411340

Mishra, A. A. & Koh, A. Y. (2018). Adaptation of Candida albicans During Gastrointestinal Tract Colonization. Current Clinical Microbiology Reports, 5(3), 165-172. https://doi.org/10.1007/s40588-018-0096-8

Naseeruddin, S., Goli, J. & Linga, V. (2014). Yeast diversity adaptation and thermotolerance. KAVAKA, 42, 87-100.

Nash, A. K., Auchtung, T. A., Wong, M. C., Smith, D. P., Gesell, J. R., Ross, M. C., Stewart, C. J., Metcalf, G. A., Muzny, D. M., Gibbs, R. A., Ajami, N. J. & Petrosino, J. F. (2017). The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 5(1), 153. https://doi.org/10.1186/s40168-017-0373-4

Nguyen, U. T. & Kalan, L. R. (2022). Forgotten fungi: the importance of the skin mycobiome. Current Opinion in Microbiology, 70, 102235. https://doi.org/10.1016/j.mib.2022.102235

Nicula, N. O., Lungulescu, E. M., Rîmbu, G. A., Marinescu, V., Corbu, V. M. & Csutak, O. (2023). Bioremediation of wastewater using yeast strains: an assessment of contaminant removal efficiency. International Journal of Environmental Research and Public Health, 20(6), 4795.

Nielsen, S., White, K., Preiss, K., Peart, D., Gianoulias, K., Juel, R., Sutton, J., McKinney, J., Bender, J., Pinc, G., Bergren, K., Gans, W., Kelley, J. & McQuaid, M. (2021). Growth and Antifungal Resistance of the Pathogenic Yeast, Candida Albicans, in the Microgravity Environment of the International Space Station: An Aggregate of Multiple Flight Experiences. Life, 11(4), 283. https://doi.org/10.3390/life11040283

Ohtsuka, H., Imada, K., Shimasaki, T. & Aiba, H. (2022). Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. MicrobiologyOpen, 11(3), e1303. https://doi.org/10.1002/mbo3.1303

Pérez, S. Á. (2022). Ecology: Yeasts on their Natural Environment. En Yeasts: From Nature to Bioprocesses (pp. 27-57). Bentham Science Publishers.Singapore. 10.2174/97898150510631220201

Pulschen, A. A., de Araujo, G. G., de Carvalho, A. C. S. R., Cerini, M. F., Fonseca, L. de M., Galante, D. & Rodrigues, F. (2018). Survival of Extremophilic Yeasts in the Stratospheric Environment during Balloon Flights and in Laboratory Simulations. Applied and Environmental Microbiology, 84(23), e01942-18. https://doi.org/10.1128/AEM.01942-18

Rastogi, R. P., Richa, Sinha, R. P., Singh, S. P. & Häder, D.-P. (2010). Photoprotective compounds from marine organisms. Journal of Industrial Microbiology and Biotechnology, 37(6), 537-558. https://doi.org/10.1007/s10295-010-0718-5

Romero-Frasca, E., Velasquez-Orta, S. B., Escobar-Sánchez, V., Tinoco-Valencia, R. & Orta Ledesma, M. T. (2021). Bioprospecting of wild type ethanologenic yeast for ethanol fuel production from wastewater-grown microalgae. Biotechnology for Biofuels, 14(1), 93. https://doi.org/10.1186/s13068-021-01925-x

Rosas-Paz, M., Zamora-Bello, A., Torres-Ramírez, N., Villarreal-Huerta, D., Romero-Aguilar, L., Pardo, J. P., El Hafidi, M., Sandoval, G., Segal-Kischinevzky, C. & González, J. (2024). Nitrogen limitation-induced adaptive response and lipogenesis in the Antarctic yeast Rhodotorula mucilaginosa M94C9. Frontiers in Microbiology, 15, 1416155. https://doi.org/10.3389/fmicb.2024.1416155

Rozaliyani, A., Antariksa, B., Nurwidya, F., Zaini, J., Setianingrum, F., Hasan, F., Nugrahapraja, H., Yusva, H., Wibowo, H., Bowolaksono, A. & Kosmidis, C. (2023). The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life, 13(4), 1017. https://doi.org/10.3390/life13041017

Santacroce, L., Passarelli, P. C., Azzolino, D., Bottalico, L., Charitos, I. A., Cazzolla, A. P., Colella, M., Topi, S., Godoy, F. G. & D’Addona, A. (2023). Oral microbiota in human health and disease: A perspective. Experimental Biology and Medicine, 248(15), 1288-1301. https://doi.org/10.1177/15353702231187645

Segal-Kischinevzky, C., Romero-Aguilar, L., Alcaraz, L. D., López-Ortiz, G., Martínez-Castillo, B., Torres-Ramírez, N., Sandoval, G. & González, J. (2022). Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms, 10(4), 1-26. https://doi.org/10.3390/microorganisms10040794

Shen, L., Zhang, S. & Chen, G. (2021). Regulated strategies of cold-adapted microorganisms in response to cold: a review. Environmental Science and Pollution Research, 28(48), 68006-68024. https://doi.org/10.1007/s11356-021-16843-6

Shi, K., Gao, Z., Shi, T.-Q., Song, P., Ren, L.-J., Huang, H. & Ji, X.-J. (2017). Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Frontiers in Microbiology, 8(793), 1-9. https://doi.org/10.3389/fmicb.2017.00793

Starmer, W. T. & Lachance, M.-A. (2011). Chapter 6 - Yeast Ecology. En C. P. Kurtzman, J. W. Fell & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (pp. 65-83). Elsevier. USA. https://doi.org/10.1016/B978-0-444-52149-1.00006-9

Sultan, A. S., Kong, E. F., Rizk, A. M. & Jabra-Rizk, M. A. (2018). The oral microbiome: A Lesson in coexistence. PLoS Pathogens, 14(1), e1006719. https://doi.org/10.1371/journal.ppat.1006719

Sun, S. & Gresham, D. (2021). Cellular quiescence in budding yeast. Yeast, 38(1), 12-29. https://doi.org/10.1002/yea.3545

Tang, W., Wang, Y., Zhang, J., Cai, Y. & He, Z. (2019). Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. Journal of Microbiology and Biotechnology, 29(4), 507-517. https://doi.org/10.4014/jmb.1801.01022

Viñarta, S. C., Angelicola, M. V., Barros, J. M., Fernández, P. M., Mac Cormak, W., Aybar, M. J. & de Figueroa, L. I. C. (2016). Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation. Journal of Basic Microbiology, 56(12), 1360-1368. https://doi.org/10.1002/jobm.201600099

Whitesell, L., Robbins, N., Huang, D. S., McLellan, C. A., Shekhar-Guturja, T., LeBlanc, E. V., Nation, C. S., Hui, R., Hutchinson, A., Collins, C., Chatterjee, S., Trilles, R., Xie, J. L., Krysan, D. J., Lindquist, S., Porco, J. A., Tatu, U., Brown, L. E., Pizarro, J. & Cowen, L. E. (2019). Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nature Communications, 10(1), 402. https://doi.org/10.1038/s41467-018-08248-w

Zaragoza, O. & Nielsen, K. (2013). Titan cells in Cryptococcus neoformans: Cells with a giant impact. Current Opinion in Microbiology, 16(4), 409. https://doi.org/10.1016/j.mib.2013.03.006

Creative Commons License

TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

Downloads

Download data is not yet available.