Resumen
Las bacterias son microorganismos difíciles de observar por técnicas convencionales, por lo que un estudio detallado de su interior, sólo es posible a través del microscopio electrónico. Definir a las bacterias en términos morfológicos también es complicado, de allí que su definición “clásica” que las conceptualiza como organismos celulares que carecen de membranas internas, si bien es incorrecta, sigue siendo muy aceptada entre los no especialistas, no obstante las bacterias tienen decenas de tipos de orgánulos, que son estructuras subcelulares, delimitadas por membranas biológicas con proteomas característicos y una peculiar fisiología. En esta breve revisión, desde una perspectiva histórica, se hace referencia a los primeros orgánulos descritos, en especial a los relacionados con los procesos de obtención de energía y fijación de carbono de las bacterias fotótrofas y de las quimiótrofas; (estos son: los cromatóforos, tilacoides, clorosomas, carboxisomas, anammoxosomas y las vacuolas energéticas), los que llevan a cabo la magnetotaxis (magnetosomas), los que concentran la mayor parte de la actividad celular (pirellulosomas) y que pueden, incluso, por la función que en su conjunto realizan, revolucionar el concepto que se tiene de las bacterias (pepins).
Citas
Abreu, N., Mannoubi, S., Ozyamak, E., Pignol, D., Ginet, N. & Komeili, A. (2014). Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. Journal of Bacteriology, 196, 3111-3121. http://dx.doi.org/10.1128/JB.01674-14
Adams, P. G., Cadby, A. J., Robinson, B., Tsukatani, Y., Marcus, T, Wen, J., Blankenship, R. E., Bryant, D. & Hunter, C. N. (2013). Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827, 1235-1244. https://doi.org/10.1016/j.bbabio.2013.07.004
Akhtar, P., Balog-Vig, F., Han, W., Li, X., Han, G., Shen, J. R. & Lambrev, P. H. (2024). Quantifying the energy spillover between photosystems II and I in cyanobacterial thylakoid membranes and cells. Plant and Cell Physiology, 65, 95-106. https://doi.org/10.1093/pcp/pcad127
Amor, M., Faivre, D., Corvisier, J., Tharaud, M., Busigny, V., Komeili, A. & Guyot, F. (2022). Defining local chemical conditions in magnetosomes of magnetotactic bacteria. The Journal of Physical Chemistry B, 126, 2677–2687. https://doi.org/10.1021/acs.jpcb.2c00752
Bailey, J. V., Flood, B. E., Ricci, E. & Delherbe, N. (2017). Imaging of cellular oxidoreductase activity suggests mixotrophic metabolisms in Thiomargarita spp. Mbio, 8, 10-1128. https://doi.org/10.1128/mbio.01263-17
Balkwill, D. L., Maratea, D. & Blakemore, R. P. (1980). Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 141, 1399-1408. https://doi.org/10.1128/jb.141.3.1399-1408.1980
Bertsova, Y. V., Mamedov, M. D. & Bogachev, A. V. (2019). Na+-translocating ferredoxin: NAD+ oxidoreductase is a component of photosynthetic electron transport chain in green sulfur bacteria. Biochemistry (Moscow), 84, 1403-1410. https://doi.org/10.1134/S0006297919110142
Beutler, M., Milucka, J., Hinck, S., Schreiber, F., Brock, J., Mußmann, Heide, N., Schulz-Vogt. & de Beer, D. (2012). Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae. Environmental Microbiology, 14, 2911-2919. https://doi.org/10.1111/j.1462-2920.2012.02851.x
Bickley, C. D., Wan, J. & Komeili, A. (2024). Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. Journal of Bacteriology, 206, e00008-24. https://doi.org/10.1128/jb.00008-24
Blakemore, R. (1975). Magnetotactic bacteria. Science, 190, 377–379. https://doi.org/10.1126/science.170679
Blakemore, R. P., Frankel, R. B. & Kalmijn, A. J. (1980). South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature, 286, 384-385. https://doi.org/10.1038/286384a0
Boedeker, C., Schüler, M., Reintjes, G., Jeske, O., van Teeseling, M. C., Jogler, M., Rast, P., Borchert, D., Devos, D. P. Kucklick, M., Schaffer, M., Kolter, R., van Niftrik, L., Engelmann, S., Amann, R., Rohde, M., Engelhardt, H. & Jogler, C. (2017). Determining the bacterial cell biology of Planctomycetes. Nature Communications, 8, 14853. https://doi.org/10.1038/ncomms14853
Bonacci, W., Teng, P. K., Afonso, B., Niederholtmeyer, H., Grob, P., Silver, P. A. & Savage, D. F. (2012). Modularity of a carbon-fixing protein organelle. Proceedings of the National Academy of Sciences, 109, 478-483. https://doi.org/10.1073/pnas.1108557109
Bowen, C. C. & Jensen, T. E. (1965). Blue-green algae: fine structure of the gas vacuoles. Science, 147, 1460-1462. https://doi.org/10.1126/science.147.3664.1460
Brangwynne, C. P. (2013). Phase transitions and size scaling of membrane-less organelles. Journal of Cell Biology, 203, 875-881. https://doi.org/10.1083/jcb.201308087
Bresan, S., Sznajder, A., Hauf, W., Forchhammer, K., Pfeiffer, D. & Jendrossek, D. (2016). Polyhydroxyalkanoate (PHA) granules have no phospholipids. Scientific Reports, 6, 26612. https://doi.org/10.1038/srep26612
Bryant, D. A. & Canniffe, D. P. (2018). How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 033001. https://doi.org/10.1088/1361-6455/aa9c3c
Byrne, M. E., Ball, D. A., Guerquin-Kern, J. L., Rouiller, I., Wu, T. D., Downing, K. H., Vali, H. & Komeili, A. (2010). Desulfovibrio magneticus RS-1 contains an iron-and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proceedings of the National Academy of Sciences, 107, 12263-12268. https://doi.org/10.1073/pnas.1001290107
Calvin, M. & Lynch, V. (1952). Grana-like structures of Synechococcus cedorum. Nature, 169, 455-456. https://doi.org/10.1038/169455b0
Chen, J. H., Wu, H., Xu, C., Liu, X. C., Huang, Z., Chang, S., Wang, W., Han, G., Kuang, T., Shen, J. R. & Zhang, X. (2020). Architecture of the photosynthetic complex from a green sulfur bacterium. Science, 370, eabb6350. https://doi.org/10.1126/science.abb6350
Cruden, D. L., Cohen-Bazire, G. & Stanier, R. Y. (1970). Chlorobium vesicles: the photosynthetic organelles of green bacteria. Nature, 228, 1345-1347. https://doi.org/10.1038/2281345a0
Dargham, T., Aguilera-Correa, J. J., Avellan, R., Mallick, I., Celik, L., Santucci, P., Brasseur, G., Poncin, I., Point, V., Audebert, S., Camoin, L., Daher, W., Cavalier, J. F., Kremer, L. & Canaan, S. (2025). A proteomic and functional view of intrabacterial lipid inclusion biogenesis in mycobacteria. mBio, 16, e01475-24. https://doi.org/10.1128/mbio.01475-24
Drews, G. (2000). The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews, 24, 225-249. https://doi.org/10.1111/j.1574-6976.2000.tb00540.x
Drews, G. & Niklowitz, W. (1956). Beiträge zur Cytologie der Blaualgen: II. Mittelung Zentroplasma und granuläre Einschlüsse von Phormidium uncinatum. Archiv. für Mikrobiologie, 24, 147-162. https://doi.org/10.1007/BF00408629
Dyall, S. D., Brown, M. T. & Johnson, P. J. (2004). Ancient invasions: from endosymbionts to organelles. Science, 304, 253-257. https://doi.org/10.1126/science.1094884
Echlin, P. & Morris, I. (1965). The relationship between blue-green algae and bacteria. Biological Reviews, 40, 143-184. https://doi.org/10.1111/j.1469-185X.1965.tb00800.x
Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. Leipzig: L. Voss. https://doi.org/10.5962/bhl.title.58475
Eren, E., Watts, N. R., Conway, J. F. & Wingfield, P. T. (2024). Myxococcus xanthus encapsulin cargo protein EncD is a flavin-binding protein with ferric reductase activity. Proceedings of the National Academy of Sciences, 121, e2400426121. https://doi.org/10.1073/pnas.2400426121
Fauré-Fremiet, E. & Rouiller, C. H. (1958). Etude au microscope electronique d’une bactérie sulfureuse, Thiovulum majus Hinze. Experimental Cell Research, 14, 29-46. https://doi.org/10.1016/0014-4827(58)90211-8
Fossing, H., Gallardo, V. A., Jørgensen, B. B., Hüttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Küver, J., Ramsing, N. B., Teske, A., Thamdrup B. & Ulloa, O. (1995). Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 374, 713-715. https://doi.org/10.1038/374713a0
Frigaard, N. U., Takaichi, S., Hirota, M., Shimada, K. & Matsuura, K. (1997). Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Archives of Microbiology, 167, 343-349. https://doi.org/10.1007/s002030050453
Fuhs, G. W. (1966). Spherical subunits in photosynthetic membranes of two Cyanophyceae and the bacterium Rhodospirillum rubrum. Archiv für Mikrobiologie, 54, 253-265. https://doi.org/10.1007/BF00408998
Goswami, P., He, K., Li, J., Pan, Y., Roberts, A. P. & Lin, W. (2022). Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms and Microbiomes, 8, 43. https://doi.org/10.1038/s41522-022-00304-0
Govindjee, G., Amesz, B., Garab, G. & Stirbet, A. (2024). Remembering Jan Amesz (1934–2001): a great gentleman, a major discoverer, and an internationally renowned biophysicist of both oxygenic and anoxygenic photosynthesisa. Photosynthesis Research, 160, 125-142. https://doi.org/10.1007/s11120-024-01102-9
Grant, C. R., Wan, J. & Komeili, A. (2018). Organelle formation in Bacteria and Archaea. Annual Review of Cell and Developmental Biology, 34, 217-238. https://doi.org/10.1146/annurev-cellbio-100616-060908
Grant, C. R., Amor, M., Trujillo, H. A., Krishnapura, S., Lavarone, A. T. & Komeili, A. (2022). Distinct gene clusters drive formation of ferrosome organelles in bacteria. Nature, 606, 160-164. https://doi.org/10.1038/s41586-022-04741-x
Greening, C. & Lithgow, T. (2020). Formation and function of bacterial organelles. Nature Reviews Microbiology, 18, 677-689. https://doi.org/10.1038/s41579-020-0413-0
Gruber, A. (2019). What’s in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts. Microbial Cell, 6, 123. https://doi.org/10.15698/mic2019.02.668
Grünberg, K., Müller, E. C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R. & Schüler, D. (2004). Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 70, 1040-1050. https://doi.org/10.1128/AEM.70.2.1040-1050.2004
Guerrero, R. (2001). Bergey’s manuals and the classification of prokaryotes. International Microbiology, 4, 103-110. https://doi.org/10.1007/s101230100021
Hauska, G., Schoedl, T., Remigy, H. & Tsiotis, G. (2001). The reaction center of green sulfur bacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1507, 260-277. https://doi.org/10.1016/S0005-2728(01)00200-6
Havemann, G. D. & Bobik, T. A. (2003). Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1, 2-propanediol in Salmonella enterica serovar Typhimurium LT2. Journal of Bacteriology, 185, 5086-5095. https://doi.org/10.1128/jb.185.17.5086-5095.2003
Heitz, E. (1936). Untersuchungen über den Bau der Plastiden. I. Die gerichteten Chlorophyllscheiben der Chloroplasten. Planta, 26, 134-163. https://www.jstor.org/stable/23356852
Huber, S. T., Terwiel, D., Evers, W. H., Maresca, D. & Jakobi, A. J. (2023). Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell, 186, 975-986. https://doi.org/10.1016/j.cell.2023.01.041
Huokko, T., Ni, T., Dykes, G. F., Simpson, D. M., Brownridge, P., Conradi, F. D., Beynon, R. J., Nixon, P. J., Mullineaux, C. W., Zhang, P. & Liu, L. N. (2021). Probing the biogenesis pathway and dynamics of thylakoid membranes. Nature Communications, 12, 3475. https://doi.org/10.1038/s41467-021-23680-1
Jensen, T. E. & Bowen, C. C. (1961). Organization of the centroplasm in Nostoc pruniforme. Proceedings of the Iowa Academy of Science, 68, 86-89. https://scholarworks.uni.edu/pias/vol68/iss1/11
Jin, X., Lee, J. E., Schaefer, C., Luo, X., Wollman, A. J., Payne-Dwyer, A. L., Tian, T., Zhang, X., Chen, X., Li, Y., McLeish, T, C, B., Leake, M. C. & Bai, F. (2021). Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness. Science Advances, 7, eabh2929. https://doi.org/10.1126/sciadv.abh2929
Keeling, P. J., McCutcheon, J. P. & Doolittle, W. F. (2015). Symbiosis becoming permanent: survival of the luckiest. Proceedings of the National Academy of Sciences, 112, 10101-10103. https://doi.org/10.1073/pnas.1513346112
Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F. & Sutter, M. (2018). Bacterial microcompartments. Nature Reviews Microbiology, 16, 277-290. https://doi.org/10.1038/nrmicro.2018.10
Kerfeld, C. A., Sawaya, M. R., Tanaka, S., Nguyen, C. V., Phillips, M., Beeby, M. & Yeates, T. O. (2005). Protein structures forming the shell of primitive bacterial organelles. Science, 309, 936-938. https://doi.org/10.1126/science.1113397
Kiani, B., Faivre, D. & Klumpp, S. (2015). Elastic properties of magnetosome chains. New Journal of Physics, 17, 043007. https://doi.org/10.1088/1367-2630/17/4/043007
Klumpp, S. & Faivre, D. (2016). Magnetotactic bacteria: magnetic navigation on the microscale. The European Physical Journal Special Topics, 225, 2173-2188. https://doi.org/10.1140/epjst/e2016-60055-y
Kobayashi, A., Takayama, Y., Hirakawa, T., Okajima, K., Oide, M., Oroguchi, T., Inui, Y., Yamamoto, M., Matsunaga, S. & Nakasako, M. (2021). Common architectures in cyanobacteria Prochlorococcus cells visualized by X-ray diffraction imaging using X-ray free electron laser. Scientific Reports, 11, 3877. https://doi.org/10.1038/s41598-021-83401-y
Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. (2006). Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science, 311, 242-245. https://doi.org/10.1126/science.1123231
Kushkevych, I., Procházka, V., Vítězová, M., Dordević, D., Abd El-Salam, M. & Rittmann, S. K. M. (2024). Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Frontiers in Microbiology, 15, 1417714. https://doi.org/10.3389/fmicb.2024.1417714
Lin, W., Zhang, W., Paterson, G. A., Zhu, Q., Zhao, X., Knight, R., Bazylinski, D. A., Roberts, A. P. & Pan, Y. (2020). Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome, 8, 1-13. https://doi.org/10.1186/s40168-020-00931-9
Lindsay, M. R., Webb, R. I. & Fuerst, J. A. (1997). Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology, 143, 739-748. https://doi.org/10.1099/00221287-143-3-739
Lindsay, M. R., Webb, R. I., Strous, M., Jetten, M. S., Butler, M. K., Forde, R. J. & Fuerst, J. A. (2001). Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Archives of Microbiology, 175, 413-429. https://doi.org/10.1007/s002030100280
Liu, P., Zheng, Y., Zhang, R., Bai, J., Zhu, K., Benzerara, K., Menguy, N., Zhao, X., Roberts, A. P., Pan, Y. & Li, J. (2023). Key gene networks that control magnetosome biomineralization in magnetotactic bacteria. National Science Review, 10, nwac238. https://doi.org/10.1093/nsr/nwac238
Lower, B. H. & Bazylinski, D. A. (2013). The bacterial magnetosome: a unique prokaryotic organelle. Journal of Molecular Microbiology and Biotechnology, 23, 63-80. https://doi.org/10.1159/000346543
Lundin, A. P., Stewart, K. L., Stewart, A. M., Herring, T. I., Chowdhury, C. & Bobik, T. A. (2020). Genetic characterization of a glycyl radical microcompartment used for 1, 2-propanediol fermentation by uropathogenic Escherichia coli CFT073. Journal of Bacteriology, 202, 10-1128. https://doi.org/10.1128/JB.00017-20
MacGregor-Chatwin, C., Jackson, P. J., Sener, M., Chidgey, J. W., Hitchcock, A., Qian, P., Mayneord, G. E., Johnson, M. P., Luthey-Schulten, Z., Dickman, M. J., Scanlan, D. J. & Hunter, C. N. (2019). Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants, 5, 879-889. https://doi.org/10.1038/s41477-019-0475-z
Maier, S. & Murray, R. G. E. (1965). The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Canadian Journal of Microbiology, 11, 645-655. https://doi.org/10.1139/m65-087
Maier, S., Völker, H., Beese, M. & Gallardo, V. A. (1990). The fine structure of Thioploca araucae and Thioploca chileae. Canadian Journal of Microbiology, 36, 438-448. https://doi.org/10.1139/m90-077
Maki, J. S. (2013). Bacterial intracellular sulfur globules: structure and function. Journal of Molecular Microbiology and Biotechnology, 23, 270-280. https://doi.org/10.1159/000351335
Maratea, D. & Blakemore, R. P. (1981). Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. International Journal of Systematic and Evolutionary Microbiology, 31, 452-455. https://doi.org/10.1099/00207713-31-4-452
Mareš, J., Strunecký, O., Bučinská, L. & Wiedermannová, J. (2019). Evolutionary patterns of thylakoid architecture in cyanobacteria. Frontiers in Microbiology, 10, 277. https://doi.org/10.3389/fmicb.2019.00277
Masó-Martínez, M., Bond, J., Okolo, C. A., Jadhav, A. C., Harkiolaki, M., Topham, P. D. & Fernández-Castané, A. (2024). An integrated approach to elucidate the interplay between iron uptake dynamics and magnetosome formation at the single-cell level in Magnetospirillum gryphiswaldense. ACS Applied Materials & Interfaces, 16, 62557−62570. https://doi.org/10.1021/acsami.4c15975
Menke, W. (1960). Das allgemeine bauprinzip des lamellarsystems der chloroplasten. Experientia, 16, 537-538. https://doi.org/10.1007/BF02158442
Menke, W. (1961a). Über die Chloroplasten von Anthoceros punctatus: (5. Mitteilung zur Entwicklungsgeschichte der Plastiden). Zeitschrift für Naturforschung B, 16, 334-336. https://doi.org/10.1515/znb-1961-0508
Menke, W. (1961b) Uber das lamellarsystem des chromatoplasmas von cyanophyceen. Zeitschrift für Naturforschung B. 16, 543-546. https://doi.org/10.1515/znb-1961-0808
Miller, L. C., Martin, D. S., Liu, L. N. & Canniffe, D. P. (2020). Composition, organisation and function of purple photosynthetic machinery.En: Wang Q. (ed). Microbial photosynthesis. (pp. 73-114). Singapore Pte: Springer Nature Ltd. https://doi.org/10.1007/978-981-15-3110-1
Moss III, F. R., Shuken, S. R., Mercer, J. A., Cohen, C. M., Weiss, T. M., Boxer, S. G. & Burns, N. Z. (2018). Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proceedings of the National Academy of Sciences, 115, 9098-910. https://doi.org/10.1073/pnas.1810706115
Mühlethaler, K. & Frey-Wyssling, A. (1959). Entwicklung und struktur der proplastiden. The Journal of Cell Biology, 6, 507-512. https://doi.org/10.1083/jcb.6.3.507
Mullineaux, C. W. & Liu, L. N. (2020). Membrane dynamics in phototrophic bacteria. Annual Review of Microbiology, 74, 633-654. https://doi.org/10.1146/annurev-micro-020518-120134
Murat, D., Byrne, M. E. & Komeili, A. (2010). Cell Biology of prokaryotic organelles. Cold Spring Harbor Perspectives in Biology, 2, a000422. https://doi.org/10.1101/cshperspect.a000422
Neumann, S., Wessels, H. J., Rijpstra, W. I. C., Sinninghe Damsté, J. S., Kartal, B., Jetten, M. S. & van Niftrik, L. (2014). Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis. Molecular Microbiology, 94, 794-802. https://doi.org/10.1111/mmi.12816
Nickelsen, J. & Zerges, W. (2013). Thylakoid biogenesis has joined the new era of bacterial cell biology. Frontiers in Plant Science, 4, 458. https://doi.org/10.3389/fpls.2013.00458
Nicolson, G. L. & Schmidt, G. L. (1971). Structure of the Chromatium sulfur particle and its protein membrane. Journal of Bacteriology, 105, 1142-1148. https://doi.org/10.1128/jb.105.3.1142-1148.1971
Noble, J. M., Lubieniecki, J., Savitzky, B. H., Plitzko, J., Engelhardt, H., Baumeister, W. & Kourkoutis, L. F. (2018). Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria. Molecular Microbiology, 109, 812-825. https://doi.org/10.1111/mmi.14077
Oborník, M. (2019). In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles. Microbial Cell, 6, 134. https://doi.org/10.15698/mic2019.02.669
Osorio, C. (2017). Sobre el origen del término bacteria: una paradoja semántica. Revista Chilena de Infectología, 34, 265-269. http://dx.doi.org/10.4067/S0716-10182017000300011
Pardee, A. B., Schachman, H. K. & Stanier, R. Y. (1952). Chromatophores of Rhodospirillum rubrum. Nature, 169, 282-283. https://doi.org/10.1038/169282a0
Pedersen, M. Ø., Underhaug, J., Dittmer, J., Miller, M. & Nielsen, N. C. (2008). The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Letters, 582, 2869-2874. https://doi.org/10.1016/j.febslet.2008.07.020
Perez-Boerema, A., Engel, B. D. & Wietrzynski, W. (2024). Evolution of thylakoid structural diversity. Annual Review of Cell and Developmental Biology, 40, 169-193. https://doi.org/10.1146/annurev-cellbio-120823-022747
Pfeiffer, D., Toro-Nahuelpan, M., Awal, R. P., Müller, F. D., Bramkamp, M., Plitzko, J. M. & Schüler, D. (2020). A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proceedings of the National Academy of Sciences, 117, 32086-32097. https://doi.org/10.1073/pnas.2014659117
Pinos, S., Pontarotti, P., Raoult, D., Baudoin, J. P. & Pagnier, I. (2016). Compartmentalization in PVC super-phylum: evolution and impact. Biology Direct, 11, 1-12. https://doi.org/10.1186/s13062-016-0144-3
Porter, J. R. (1976). Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriological Reviews, 40, 260-269. https://doi.org/10.1128/br.40.2.260-269.1976
Rae, B. D., Long, B. M., Badger, M. R. & Price, G. D. (2013). Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiology and Molecular Biology Reviews, 77, 357-379. https://doi.org/10.1128/mmbr.00061-12
Raschdorf, O., Bonn, F., Zeytuni, N., Zarivach, R., Becher, D. & Schüler, D. (2018). A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. Journal of Proteomics, 172, 89-99. https://doi.org/10.1016/j.jprot.2017.10.007
Rast, A., Schaffer, M., Albert, S., Wan, W., Pfeffer, S., Beck, F., Plitzko, M. J., Nickelsen, J. & Engel, B. D. (2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants, 5, 436-446. https://doi.org/10.1038/s41477-019-0399-7
Remsen, C. C. (1982). Structural attributes of membranous organelles in bacteria. International Review of Cytology, 76, 195-223. https://doi.org/10.1016/S0074-7696(08)61791-X
Sanapala, P. & Pola, S. (2021). Understanding the cell organization in Planctomycetes. En: Villa, T. G., de Miguel Bouzas, T. (eds) Developmental biology in prokaryotes and lower eukaryotes. (pp. 229-248). Cham: Springer, https://doi.org/10.1007/978-3-030-77595-7_10
Schachman, H. K., Pardee, A. B. & Stanier, R. Y. (1952). Studies on the macromolecular organization of microbial cells. Archives of Biochemistry and Biophysics, 38, 245-260. https://doi.org/10.1016/0003-9861(52)90029-5
Scheuring, S., Nevo, R., Liu, L. N., Mangenot, S., Charuvi, D., Boudier, T., Prima, V., Hubert, P., Sturgis, J. N. & Reich, Z. (2014). The architecture of Rhodobacter sphaeroides chromatophores. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837, 1263-1270. https://doi.org/10.1016/j.bbabio.2014.03.011
Schrader, M., Godinho, L. F., Costello, J. L. & Islinger, M. (2015). The different facets of organelle interplay—an overview of organelle interactions. Frontiers in Cell and Developmental Biology, 3, 56. https://doi.org/10.3389/fcell.2015.00056
Schüler, D. (2004). Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Archives of Microbiology, 181, 1-7. https://doi.org/10.1007/s00203-003-0631-7
Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Mariné, M. H., Teske, A. & Jørgensen, B. B. (1999). Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 284, 493-495. https://doi.org/10.1126/science.284.5413.493
Scott, K. M., Harmer, T. L., Gemmell, B. J., Kramer, A. M., Sutter, M., Kerfeld, C. A., Barber, K. S., Bari, S., Boling, J. W., Campbell, C. P., Gallard-Gongora, J. F., Jackson, J. K., Lobos, A., Mounger, J. M., Radulovic, P. W., Sanson, J. M., Schmid, S., Takieddine, C., Warlick, K. F., Whittaker, R. & Whittaker, R. (2020). Ubiquity and functional uniformity in CO2 concentrating mechanisms in multiple phyla of Bacteria is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters. FEMS Microbiology Letters, 367, fnaa106. https://doi.org/10.1093/femsle/fnaa106
Seo, D., Tomioka, A., Kusumoto, N., Kamo, M., Enami, I. & Sakurai, H. (2001). Purification of ferredoxins and their reaction with purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1503, 377-384. https://doi.org/10.1016/S0005-2728(00)00245-0
Seufferheld, M., Vieira, M. C., Ruiz, F. A., Rodrigues, C. O., Moreno, S. N. & Docampo, R. (2003). Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. Journal of Biological Chemistry, 278, 29971-29978. https://doi.org/10.1111/10.1074/jbc.M304548200
Shimakawa, G. (2023). Electron transport in cyanobacterial thylakoid membranes: are cyanobacteria simple models for photosynthetic organisms?. Journal of Experimental Botany, 74, 3476-3487. https://doi.org/10.1093/jxb/erad118
Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. I. (2019). Phagocytosis-like cell engulfment by a planctomycete bacterium. Nature Communications, 10, 5529. https://doi.org/10.1038/s41467-019-13499-2
Shively, J. M., Ball, F., Brown, D. H. & Saunders, R. E. (1973). Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science, 182, 584-586. https://doi.org/10.1126/science.182.4112.584
Sinninghe-Damsté, J. S., Strous, M., Rijpstra, W. I. C., Hopmans, E. C., Geenevasen, J. A., Van Duin, A. C. T., van Niftrik L. A. & Jetten, M. S. (2002). Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 419, 708-712. https://doi.org/10.1038/nature01128
Staehelin, L. A. (2003). Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynthesis Research, 76, 185-196. https://doi.org/10.1023/A:1024994525586
Staehelin, L. A. & Paolillo, D. J. (2020). A brief history of how microscopic studies led to the elucidation of the 3D architecture and macromolecular organization of higher plant thylakoids. Photosynthesis Research, 145, 237-258. https://doi.org/10.1007/s11120-020-00782-3
Staehelin, L. A., Golecki, J. R. & Drews, G. (1980). Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 589, 30-45. https://doi.org/10.1016/0005-2728(80)90130-9
Stanier, R. Y. & van Niel, C. B. (1962). The concept of a bacterium. Archiv für Mikrobiologie, 42, 17-35. https://doi.org/10.1007/BF00425185
Stanier, R. Y., Kunisawa, R., Mandel, M. C. B. G. & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35, 171-205. https://doi.org/10.1128/br.35.2.171-205.1971
Strous, M., Fuerst, J. A., Kramer, E. H., Logemann, S., Muyzer, G., Van De Pas-Schoonen, K. T., Webb, R., Kuenen, J. G. & Jetten, M. S. (1999). Missing lithotroph identified as new planctomycete. Nature, 400, 446-449. https://doi.org/10.1038/22749
Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M. J., Stetter, K. O., Weber-Ban, E. & Ban, N. (2008). Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nature Structural & Molecular Biology, 15, 939-947. https://doi.org/10.1038/nsmb.1473
Tanaka, S., Kerfeld, C. A., Sawaya, M. R., Cai, F., Heinhorst, S., Cannon, G. C. & Yeates, T. O. (2008). Atomic-level models of the bacterial carboxysome shell. Science, 319,1083-1086. https://doi.org/10.1126/science.115145
Thiel, V., Tank, M. & Bryant, D. A. (2018). Diversity of chlorophototrophic bacteria revealed in the omics era. Annual Review of Plant Biology, 69, 21-49. https://doi.org/10.1146/annurev-arplant-042817-040500
Toro-Nahuelpan, M., Müller, F. D., Klumpp, S., Plitzko, J. M., Bramkamp, M. & Schüler, D. (2016). Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biology, 14, 1-24. https://doi.org/10.1186/s12915-016-0290-1
Toro-Nahuelpan, M., Giacomelli, G., Raschdorf, O., Borg, S., Plitzko, J. M., Bramkamp, M., Schüler, D. & Müller, F. D. (2019). MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 4, 1978-1989. https://doi.org/10.1038/s41564-019-0512-8
Tucker, J. D., Siebert, C. A., Escalante, M., Adams, P. G., Olsen, J. D., Otto, C., Stokes, D. & Hunter, C. N. (2010). Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 76, 833-847. https://doi.org/10.1111/j.1365-2958.2010.07153.x
Uchino, K., Saito, T., Gebauer, B. & Jendrossek, D. (2007). Isolated poly (3-hydroxybutyrate)(PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. Journal of Bacteriology, 189, 8250-8256. https://doi.org/10.1128/jb.00752-07
Uebe, R. & Schüler, D. (2016). Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews Microbiology, 14, 621-637. https://doi.org/doi:10.1038/nrmicro.2016.99
Uebe, R., Junge, K., Henn, V., Poxleitner, G., Katzmann, E., Plitzko, J. M., Zarivach, R., Kasama, T., Wanner, G., Pósfai, M., Böttger, L., Matzanke, B. & Schüler, D. (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Molecular Microbiology, 82, 818-835. https://doi.org/10.1111/j.1365-2958.2011.07863.x
Van Niftrik, L., Van Helden, M., Kirchen, S., Van Donselaar, E. G., Harhangi, H. R., Webb, R. I., Fuerst, J. A., Op den Camp, H. J. M., Jetten, M. S. M. & Strous, M. (2010). Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Molecular Microbiology, 77, 701-715. https://doi.org/10.1111/j.1365-2958.2010.07242.x
van Teeseling, M. C., de Almeida, N. M., Klingl, A., Speth, D. R., Op den Camp, H. J., Rachel, R., Jetten, M. S. N. & van Niftrik, L. (2014). A new addition to the cell plan of anammox bacteria:“Candidatus Kuenenia stuttgartiensis” has a protein surface layer as the outermost layer of the cell. Journal of Bacteriology, 196, 80-89. https://doi.org/10.1128/JB.00988-13
Volland, J. M., Gonzalez-Rizzo, S., Gros, O., Tyml, T., Ivanova, N., Schulz, F., Goudeau, D., Elisabeth, N. H., Nath, N., Udwary, D., Malmstrom, R. R., Guidi-Rontani, C., Bolte-Kluge, S., Davies, K. M., Jean, M. R., Mansot, J. L., Mouncey, N. J., Angert, E. R., Woyke, T., Date, S. D. & Date, S. V. (2022). A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science, 376, 1453-1458. https://doi.org/10.1126/science.abb3634
Vothknecht, U. C. & Westhoff, P. (2001). Biogenesis and origin of thylakoid membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1541, 91-101. https://doi.org/10.1016/S0167-4889(01)00153-7
Wältermann, M., Hinz, A., Robenek, H., Troyer, D., Reichelt, R., Malkus, U., Galla, H. J., Kalscheuer, R., Stöveken, T., von Landenberg, P. & Steinbüchel, A. (2005). Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Molecular Microbiology, 55, 750-763. https://doi.org/10.1111/j.1365-2958.2004.04441.x
Wang, P., Li, J., Li, T., Li, K., Ng, P. C., Wang, S., Chriscoli, V., Basle, A., Marles-Wright, J., Zhang, Y. Z. & Liu, L. N. (2024). Molecular principles of the assembly and construction of a carboxysome shell. Science Advances, 10, eadr4227. https://doi.org/10.1126/sciadv.adr4227
Weier, E. (1938). The structure of the chloroplast. The Botanical Review, 4, 497-530. https://doi.org/10.1007/BF02872548
Woese, C. R. & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences, 74, 5088-5090. https://doi.org/10.1073/pnas.74.11.5088
Yang, M., Wenner, N., Dykes, G. F., Li, Y., Zhu, X., Sun, Y., Huang, F., Hinton, J. C. D. & Liu, L. N. (2022). Biogenesis of a bacterial metabolosome for propanediol utilization. Nature Communications, 13, 2920. https://doi.org/10.1038/s41467-022-30608-w
Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. (2008). Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Reviews Microbiology, 6, 681-691. https://doi.org/10.1038/nrmicro1913
Wurzbacher, C. E., Hammer, J., Haufschild, T., Wiegand, S., Kallscheuer, N. & Jogler, C. (2024). “Candidatus Uabimicrobium helgolandensis”—a planctomycetal bacterium with phagocytosis-like prey cell engulfment, surface-dependent motility, and cell division. Mbio, 15, e02044-24. https://doi.org/10.1128/mbio.02044-24
Zamal, M. Y., Madireddi, S., Mekala, N. R., Chintalapati, V. R. & Subramanyam, R. (2024). Differential stability of bacterial photosynthetic apparatus of Rhodobacter alkalitolerans strain JA916T under alkaline and light environment. Frontiers in Microbiology, 15, 1360650. https://doi.org/10.3389/fmicb.2024.1360650
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.