Introduction
The mango production in Mexico (Mangifera indica L.) has managed to
stay at one million tons per year for the last decade. Among the cultivars with the
largest cultivated areas are Ataulfo, Manila, Tommy Atkins, Haden, Kent, Keitt and
Criollo (SIAP, 2017). The mango consumption
is mainly as fresh fruit, but also is processed into value-added products such as
juices, jams, candies, frozen and dried, among others (Siddiq, Sogi & Roidoung, 2017). However, the industrial
processing generates waste by-products, which are not commercially exploited. These
wastes, composed primarily of pericarp, endocarp and cotyledon, represent 28 to 38 %
of the total content of the fruit (Sumaya-Martínez,
Sánchez-Herrera, Torres-García & García-Paredes, 2012) and when not
used, generate environmental problems due to microbial development and unpleasant
odors formed by their decomposition (Jahurul
et al., 2015). Furthermore, the consumption of
functional foods has become popular in recent years and is defined by the Functional
Food Center (FFC) "as natural or processed foods that contains known or
unknown biologically-active compounds; the foods, in defined, effective, and
non-toxic amounts, provide a clinically proven and documented health benefitfor
the prevention, management, or treatment of chronic disease"
(Martirosyan & Singh, 2015). Mango
peel contains antioxidants and dietary fiber and can be used in food preparations
for the health benefits (Serna-Cook, García-Gonzales
& Torres-León, 2016; Ajila, Aalami,
Leelavathi & Rao, 2010). For those reasons, the aim of this study was
to characterize the nutritional content and antioxidant capacity of pericarp powders
of Ataulfo mango, Keitt and Tommy Atkins cultivars for possible applications in
value-added products.
Materials and methods
Mangos of Ataulfo, Keitt and Tommy Atkins cultivars in state of maturity for
consumption produced in Escuinapa, Sinaloa, were collected from June to September
2017 at harvest maturity. The pericarp was manually separated at the Laboratory of
Protected Agriculture and Postharvest CIAD Culiacán and stored at -20 °C until use.
Subsequently, it was dehydrated for five hours at 80 °C (Excalibur® dehydrator,
model Comm 2). The particle size was reduced using a Pulvex 200® mill (0 2 mm) and
stored in Ziploc® bags at room temperature. The powders obtained were characterized
with the protocols of the AOAC (AOAC, 1998) in
moisture content (920.39), ash (942.05), protein (988.05), fat (920.39), and
minerals (955.06). The total dietary fiber, soluble and insoluble, was determined
using the method 32-05.01 of the AACC (McCleary,
Sloane, Draga & Lazewska, 2013). Finally, the proximal carbohydrate
content was calculated by difference: % carbohydrates = [100 - (% ash + %
moisture + % fat + % protein)].
Total phenols
The phenolic compounds were extracted according to Adom & Liu (2002) and Vázquez-Olivo, López-Martínez, Contreras-Angulo & Heredia (2017)
with modifications. Briefly, samples of pericarp powder (2.5 g) were mixed with
10 mL of 80 % ethanol (v v-1), homogenized 10 s (Ultra-Turrax,
homogenizer) and incubated for two hours with shaking at 200 rpm at room
temperature (25 °C). Then, they were centrifuged (10, 000 rpm) (Thermo Fisher
Scientific®, Sorvall Legend XTR) for 15 minutes at 4 °C. In a 96-well
microplate, 10 μL extract, 10 μl of blank (ethanol 80 %) and standard curve of
gallic acid in concentrations of 0 to 0.4 mg mL-1 (10 μL per
concentration) diluted in ethanol 80 % (v v-1) were separately
distributed. To each treatment, 230 μL of distilled water and 10 μL de of
Folin-Ciocalteu reagent (2 N) were added and incubated for three minutes at 25
°C in the absence of light. Then 25 μL of Na2CO3 (4 N) was
added, incubated for 2 h at 25 °C and the absorbance measured at 725 nm in
microplate reader (Synergy HT, BioTek®, Co. EUA). The content of
total phenols was determined from the standard curve of gallic acid, and the
results were expressed in mg equivalent of gallic acid per 100 g (mg EAG 100
g-1).
Antioxidant Capacity
The antioxidant capacity was quantified by the ORAC method (Oxygen Radical
Aborbance Capacity), as reported by Huang, Ou,
Hampsch-Woodill, Flanagan & Prior (2002), and modified by Vázquez-Olivo, López-Martínez, Contreras-Angulo
& Heredia (2017). AAPH (2,2-azo-bis-2-methylpropanamide
dihydrochloride, Sigma-Aldrich®) and fluorescein (Sigma-Aldrich®)
were used. The standard Trolox curve was prepared with the concentrations: 6.25,
12.5, 25, 50, 75, 100 y 125 μM. The measurements were performed in 96-wells
plates with a Synergy HT microplate reader (BioTek®, Co. EUA) at 37
°C. The results were expressed in μmol equivalents of Trolox per 100 g μmol ET
100 g-1).
Experiment design and statistical analysis
The design of the experiment was completely random of one factor (cultivar). Mean
(n=3) and standard deviations of the response variables were obtained and an
analysis of variance (ANOVA) was performed with subsequent comparisons of
statistical groups with the Tukey test (p≤0.05) utilizing the statistical
program JMP V5. 5.0 (USA).
Results and discussion
The proximal analysis of the mango pericarp powders of Ataulfo, Keitt and Tommy
Atkins is shown in Table I. In percentage of
moisture, significant differences were found in ethereal extract and carbohydrates
(p≤0.05) between cultivars. The pericarp powder Tommy Atkins contains higher
moisture (8.57 %) compared to Keitt and Ataulfo. The lower content of water in
pericarp powders of the Keitt and Ataulfo cultivars may be due to the differences in
composition of the ethereal extract content, as having a higher concentration of
hydrophobic compounds, and the hydrophobic repulsion with water eases its
evaporation in the dehydrator. Regarding the percentage of moisture values, <6 %
is suitable to maintain stability in food (Barbosa,
Fontana, Schmidt & Labuza, 2007). In the mango pericarp powders of
this study, the moisture contents were higher than 6 % and lower than 9 %; however,
it could be reduced to the ideal percentage if the dehydration times are extended.
Moreover, Ajila, Leelavathi & Rao (2008)
report percentages of ethereal extract, ash and total protein in 2.2 %, 3.0 % and
3.6 %, respectively, for ripe mango dehydrated for 18 hours at 50 °C. Although the
evaluated cultivar was not reported, its proximal composition is similar to the one
obtained in this investigation. Also, similar results were found to those reported
by Serna-Cock, Torres-León & Ayala-Aponte
(2015a) where they report ethereal extracts of 1.87 % and 1.78 % for
mango Keitt and Tommy Atkins, respectively.
Table I
Proximal analysis of mango pericarp powder.
Cultivar |
Moisture |
Ethereal extract |
Protein |
Ashes |
Carbohydrates |
Ataulfo |
6.96±0.43b
|
1.866±0.080b
|
2.573±0.899a
|
2.133± 0.038 a
|
92.95±0.797ab
|
Keitt |
6.68±0.0.10b
|
2.27±0.048a
|
2.707±0.163a
|
2.074±0.113 a
|
92.955±0.105b
|
Tommy Atkins |
8.57±0.09a
|
1.33±0.049c
|
1.980±0.477a
|
2.165±0.111 a
|
93.955±0.281a
|
Average percentages (n=3) and
standard deviation expressed in a dry weigh basis. Means with
different letter in columns are statistically different (Tukey,
p≤0.05). |
The Table II shows the mineral content.
Significant differences were obtained (p<0.05) between cultivars. In Ataulfo, the
minerals manganese (Mn), zinc (Zn), copper (Cu) and potassium (K) were higher than
Keitt and Tommy Atkins cultivars. The content ofpotassium, calcium, magnesium (Mg)
and manganese found in Ataulfo, Keitt and Tommy Atkins mango powders can be an
alternative source of the micronutrients in food formulations ( Araújo et al, 2014).
Table II
Mineral content of mango pericarp powder.
Mineral (ppm) |
Mango cultivar |
Ataulfo |
Keitt |
Tommy Atkins |
Fe
|
16.49±2.47a
|
13.69±0.49a
|
17.16±2.93a
|
Mn
|
33.32±0.95a
|
18.92±0.56b
|
20.19±0.15b
|
Zn
|
7.98±0.09a
|
5.07±0.93b
|
6.02±0.11b
|
Cu
|
4.60±0.26a
|
2.10±0.14b
|
3.28±0.14c
|
K
|
8363.94±622.56a
|
6643±415.12b
|
6986±137.73b
|
Ca
|
3917.79±13.53a
|
2361.11±239.26b
|
3639.42±20.10a
|
Mg
|
1232.33±2.78a
|
949.42±99.9470b
|
1144.95±12.91a
|
Average concentrations (n=3) and
standard deviation expressed in dry weight basis. Means with
same letter in files are not statistically different (Tukey,
p ≤ 0.05). |
In antioxidant capacity and total phenols (Table III), the pericarp powder of Ataulfo
cultivar showed significant differences (p≤0.05) with respect to Keitt and Tommy
Atkins cultivars. The mango pericarp is a product with potential as an antioxidant.
Among the phenolic compounds that can be found in this tissue are quercetin and its
derivatives, ellagic acid, mangiferin and derivatives, carotenoids, tocopherols, and
sterols, among others (Dorta, Lobo & González,
2012). García, García, Bello-Pérez,
Sáyago-Ayerdi & Oca (2013) reported that the lyophilized pericarp of
the Ataulfo mango resulted in a higher phenolic content (6813 mg EAG 100
g-1), as well as greater antioxidant capacity (1276 μmol ET 100
g-1 ) when compared to the pericarp of the Tommy Atkins cultivar. The
results obtained in this study were higher in antioxidant capacity and phenol
content (Table III).
Table III
Antioxidant capacity and phenol content of mango pericarp
powders.
Cultivar |
Antioxidant capacity μmol ET 100
g-1) |
Phenol content (mg EAG 100 g-1) |
Ataulfo
|
34811±2.96a
|
7578±10.09a
|
Keitt
|
27256±50.77b
|
5228±8.24b
|
Tommy Atkins
|
23270±9.38b
|
3857±5.35b
|
Average concentrations (n=3) and
standard deviation expressed in dry weight basis. Means with
different letter in columns are statistically different (Tukey,
p ≤ 0.05). |
The composition of antioxidants is of interest because there is a reduction of
antioxidant compounds in dehydrated with the application of forced heat with
temperature over 70 °C (Dorta, Lobo & González,
2012). However, the concentration of antioxidants obtained after
dehydrated (80 °C) in mango pericarp powders does not affect the possible use for
antioxidant properties.
The dietary fiber content obtained for mango pericarp powders can be considered as an
ingredient for functional foods. This is because the total dietary fiber content of
mango pericarps is superior to other commercial products considered high in dietary
fiber, such as bread whole wheat and rye bread (Serna-Cock et al., 2015a; Serna-Cock et al., 2015b). The soluble and
insoluble fiber contents in mango pericarp powders was higher than 19 % and 9 %,
respectively for the three cultivars (Table
IV). Serna-Cock, Torres-León &
Ayala-Aponte (2015b) reported total fiber content (soluble and insoluble)
for lyophilized powders of Keitt mango above 22 %. The pericarp powders of Ataulfo,
Keitt and Tommy Atkins samples in this study contain 38, 28, and 39 %, respectively,
of total fiber. However, Hincapíe, Vásquez, Galicia
& Hincapíe (2014) reported the total dietary fiber content higher
than 60 % for mangoes commercially obtained and crude fiber of 18 %, higher values
to those obtained in this study. The differences in fiber content may be due to the
process of water elimination, pre-harvest conditions and state of maturity of the
mango, although in all cases, the fiber content can be considered high. Therefore,
if the interest of obtaining pericarp powders is the use of total dietary fiber, the
method used in this study may be acceptable.
Table IV
Dietary fiber content of mango pericarp powder.
Cultivar |
Soluble fiber |
Insoluble fiber |
Ataulfo
|
23.84±4.61a
|
15.16±3.24a
|
Keitt
|
19.18±1.09a
|
9.73±4.89a
|
Tommy
|
23.31±4.16 a
|
16.53±0.26a
|
Average concentrations (n=3) and
standard deviation expressed in dry weight basis. Means with
same letter in columns are not statistically different (Tukey, p
≤ 0.05). |
With respect to its use as an ingredient in food, functions due to its composition
Serna-Cock, Torres-León & Ayala-Aponte
(2015b) recommend the use of pericarp powders of Keitt and Tommy Atkins
cultivars as emulsifying agents in the food industry, as well as constituents in the
functional food formulation. In macaroni, Ajila,
Aalami, Leelavathi & Rao (2010) incorporated mango peel and obtained
major properties functional because an increase in antioxidant properties and
dietary fiber from mango peel.
Conclusions
The mango pericarp powders of the Ataulfo, Keiit and Tommy Atkins cultivars can
complement the nutritional and functional content in the food formulation due to
their antioxidant capacity and fiber content. Future studies focusing on assessing
the shelf life and use as an ingredient in functional foods could be carried in
order to evaluate the potential of this ingredients as functional foods.
Acknowledgments
The authors are grateful for the financial support for this research FORDECYT
2017-10: "Estrategias multidisciplinarias para incrementar el valor agregado de
las cadenas productivas del café, frijol, mango, agave mezcalero y productos
acuícolas (tilapia) en la región Pacífico Sur a través de la ciencia, la tecnología
y la innovación", application number: 292474.
References
Adom, K.K. & Liu, R.H. (2002). Antioxidant activity of grains.
Journal of agricultural and food chemistry, 50, 6182-6187.
DOI: 10.1021/jf0205099.
K.K. Adom
R.H Liu
2002Antioxidant activity of grainsJournal of agricultural and food chemistry50,6182618710.1021/jf0205099
Ajila, C.M., Aalami, M., Leelavathi, K. & Rao, U. P. (2010).
Mango peel powder: A potential source of antioxidant and dietary fiber in
macaroni preparations. Innovative Food Science & Emerging
Technologies, 11, 219-224.
https://doi.org/10.1016/j.ifset.2009.10.004
C.M. Ajila
M. Aalami
K. Leelavathi
U. P Rao
2010Mango peel powder: A potential source of antioxidant and dietary
fiber in macaroni preparationsInnovative Food Science & Emerging Technologies11,21922410.1016/j.ifset.2009.10.004
Ajila, C.M., Leelavathi, K.U.J.S. & Rao, U.P. (2008).
Improvement of dietary fiber content and antioxidant properties in soft dough
biscuits with the incorporation of mango peel powder. Journal of cereal
science, 48, 319-326. DOI:10.1016/j.jcs.2007.10.001.
C.M. Ajila
K.U.J.S. Leelavathi
U.P Rao
2008Improvement of dietary fiber content and antioxidant properties
in soft dough biscuits with the incorporation of mango peel
powderJournal of cereal science48,31932610.1016/j.jcs.2007.10.001
AOAC. 1998. Official Methods of Association of Official
Analytical Chemists. Washington, D.C: Ed. AOAC
International.
AOAC
1998Official Methods of Association of Official Analytical ChemistsWashington, D.CEd. AOAC International
Araújo, C.R., Botelho, P.S., Silvac, T.M.S., Maciela, M.I.S., Meloa,
E.A., Ryan, S. & Smith, R.E. (2014). Phenolic Compounds and Metals in Tommy
Atkins Mango (Mangifera indica L) Peels. The Natural
Products Journal, 4, 2-7. DOI:
10.2174/221031550401140715094338.
C.R. Araújo
P.S. Botelho
T.M.S. Silvac
M.I.S. Maciela
E.A. Meloa
S. Ryan
R.E Smith
2014Phenolic Compounds and Metals in Tommy Atkins Mango (Mangifera
indica L) PeelsThe Natural Products Journal4,2710.2174/221031550401140715094338
Barbosa, G.V., Fontana, A.J., Schmidt, S.J. & Labuza, T.P.
(Eds.). (2008). Water activity in foods: fundamentals and
applications (Vol. 13). John Wiley & Sons. Iowa , USA: Ed.
Blackwell Publishing.
G.V. Barbosa
A.J. Fontana
S.J. Schmidt
T.P Labuza
2008Water activity in foods: fundamentals and applications(Vol.13).John Wiley & SonsIowa , USAEd. Blackwell Publishing
Dorta, E., Lobo, M.G. & González, M. (2012). Using drying
treatments to stabilise mango peel and seed: Effect on antioxidant activity.
LWT-Food Science and Technology, 45, 261-268. DOI:
10.1016/j.lwt.2011.08.016.
E. Dorta
M.G. Lobo
M González
2012Using drying treatments to stabilise mango peel and seed: Effect
on antioxidant activityLWT-Food Science and Technology45,26126810.1016/j.lwt.2011.08.016
García, M., García, H.S., Bello-Pérez, L.A., Sáyago-Ayerdi, S.G.
& de Oca, M.M.M. (2013). Functional properties and dietary fiber
characterization of mango processing by-products (Mangifera
indica L., cv Ataulfo and Tommy Atkins). Plant foods for
human nutrition, 68, 254-258.
DOI:10.1007/s11130-013-0364-y.
M. García
H.S. García
L.A. Bello-Pérez
S.G. Sáyago-Ayerdi
M.M.M de Oca
2013Functional properties and dietary fiber characterization of mango
processing by-products (Mangifera indica L., cv Ataulfo and Tommy
Atkins)Plant foods for human nutrition68,25425810.1007/s11130-013-0364-y
Hincapíe, L.G.A., Vásquez, O.D.C., Galicia, M.V.S. & Hincapíe,
L.C.A. (2014). Propiedades técnico-funcionales de la fibra dietaria de cáscaras
de mango variedad Hilacha (Mangifera indica L.) efecto del
secado por convección. Biotecnología en el Sector Agropecuario y
Agroindustrial, 12, 153-160.
L.G.A. Hincapíe
O.D.C. Vásquez
M.V.S. Galicia
L.C.A Hincapíe
2014Propiedades técnico-funcionales de la fibra dietaria de cáscaras
de mango variedad Hilacha (Mangifera indica L.) efecto del secado por
convecciónBiotecnología en el Sector Agropecuario y Agroindustrial12153160
Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A. & Prior,
R.L. (2002). High-through put assay of oxygen radical absorbance capacity (ORAC)
using a multichannel liquid handling system coupled with a microplate
fluorescence reader in 96-well format. Journal of agricultural and food
chemistry, 50, 4437-4444. DOI: 10.1021/jf0201529.
D. Huang
B. Ou
M. Hampsch-Woodill
J.A. Flanagan
R.L Prior
2002High-through put assay of oxygen radical absorbance capacity
(ORAC) using a multichannel liquid handling system coupled with a microplate
fluorescence reader in 96-well formatJournal of agricultural and food chemistry50,4437444410.1021/jf0201529
Jahurul, M.H.A., Zaidul, I.S.M., Ghafoor, K., Al-Juhaimi, F.Y.,
Nyam, K.L., Norulaini, N.A.N. & Omar, A.M. (2015). Mango (Mangifera
indica L.) by-products and their valuable components: A review.
Food Chemistry, 183, 173-180. DOI:
10.1016/j.foodchem.2015.03.046.
M.H.A. Jahurul
I.S.M. Zaidul
K. Ghafoor
F.Y. Al-Juhaimi
K.L. Nyam
N.A.N. Norulaini
A.M Omar
2015Mango (Mangifera indica L.) by-products and their valuable
components: A reviewFood Chemistry183,17318010.1016/j.foodchem.2015.03.046
Martirosyan, D. M. & Singh, J. (2015). A new definition of
functional food by FFC: what makes a new definition unique?. Functional
Foods in Health and Disease, 5, 209-223.
D. M. Martirosyan
J Singh
2015A new definition of functional food by FFC: what makes a new
definition unique?Functional Foods in Health and Disease5,209223
McCleary, B.V., Sloane, N., Draga, A. & Lazewska, I. (2013).
Measurement of Total Dietary Fiber Using AOAC Method 2009.01 (AACC International
Approved Method 32-45.01): Evaluation and Updates. Cereal
Chemistry, 90, 396-414.
DOI:10.1094/cchem-10-12-0135-FI.
B.V. McCleary
N. Sloane
A. Draga
I Lazewska
2013Measurement of Total Dietary Fiber Using AOAC Method 2009.01
(AACC International Approved Method 32-45.01): Evaluation and
UpdatesCereal Chemistry90,39641410.1094/cchem-10-12-0135-FI
Serna-Cock, L., García-Gonzales, C. & Cristian Torres-León
(2016) Agro-industrial potential of the mango peel based on its nutritional and
functional properties, Food Reviews International, 32, 364-376.
DOI: 10.1080/87559129.2015.1094815.
L. Serna-Cock
C. García-Gonzales
Cristian Torres-León
2016Agro-industrial potential of the mango peel based on its
nutritional and functional propertiesFood Reviews International32,36437610.1080/87559129.2015.1094815
Serna-Cock, L., Torres-León, C. & Ayala-Aponte, A. (2015a).
Efecto de la Adición de Edulcorantes no Calóricos sobre las Propiedades
Fisicoquímicas y la Cinética de Secado de Cáscara de Mango Liofilizado.
Información tecnológica, 26, 37-44. DOI:
10.4067/S0718-07642015000400006.
L. Serna-Cock
C. Torres-León
A Ayala-Aponte
2015Efecto de la Adición de Edulcorantes no Calóricos sobre las
Propiedades Fisicoquímicas y la Cinética de Secado de Cáscara de Mango
LiofilizadoInformación tecnológica26,374410.4067/S0718-07642015000400006
Serna-Cock, L. , Torres-León, C. & Ayala-Aponte, A. (2015b).
Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango
(Mangifera indica) como fuente de Ingredientes Funcionales.
Información tecnológica, 26, 41-50. DOI:
10.4067/S0718-07642015000200006.
L. Serna-Cock
C. Torres-León
A Ayala-Aponte
2015Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango
(Mangifera indica) como fuente de Ingredientes FuncionalesInformación tecnológica26,415010.4067/S0718-07642015000200006
SIAP (Servicio de Información Agroalimentaria y Pesquera). 2017.
Atlas Agroalimentario, 2017. p. 106-108. México.
Servicio de Información Agroalimentaria y Pesquera
2017Atlas Agroalimentario, 2017106108México
Siddiq, M., Sogi, D.S. & Roidoung, S. (2017). Mango Processing
and Processed Products. En Siddiq, M., Brecht, J. K. & Sidhu, J. S. (Eds.)
Handbook of Mango Fruit: Production, Postharvest Science, Processing
Technology and Nutrition, (pp. 195-216). John Wiley &
Sons.
M. Siddiq
D.S. Sogi
S Roidoung
2017Mango Processing and Processed Products
M. Siddiq
J. K. Brecht
J. S Sidhu
Handbook of Mango Fruit: Production, Postharvest Science, Processing
Technology and Nutrition195216John Wiley & Sons
Sumaya-Martínez, M. T., Sánchez Herrera, L. M., Torres García, G.
& García Paredes, D. (2012). Red de valor del mango y sus desechos con base
en las propiedades nutricionales y funcionales. Revista Mexicana de
Agronegocios, 16, 826-833.
M. T. Sumaya-Martínez
L. M. Sánchez Herrera
G. Torres García
D García Paredes
2012Red de valor del mango y sus desechos con base en las propiedades
nutricionales y funcionalesRevista Mexicana de Agronegocios16,826833
Vázquez-Olivo, G., López-Martínez, L. X., Contreras-Angulo, L. &
Heredia, J. B. (2017). Antioxidant Capacity of Lignin and Phenolic Compounds
from Corn Stover. Waste and Biomass Valorization, 1-8. DOI:
10.1007/s12649-017-0028-5.
G. Vázquez-Olivo
L. X. López-Martínez
L. Contreras-Angulo
J. B Heredia
2017Antioxidant Capacity of Lignin and Phenolic Compounds from Corn
StoverWaste and Biomass Valorization1810.1007/s12649-017-0028-5
TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS, Volumen 26, 2023, es una publicación editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, Ciudad de México, México, a través de la Facultad de Estudios Superiores Zaragoza, Campus I, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, Teléfono: 55.56.23.05.27, http://tip.zaragoza.unam.mx, Correo electrónico revistatip@yahoo.com, Editor responsable: Dra. Martha Asunción Sánchez Rodríguez, Certificado de Reserva de Derechos al Uso Exclusivo del Título No. 04-2014-062612263300-203, ISSN impreso: 1405-888X, ISSN electrónico: 2395-8723, otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número Claudia Ahumada Ballesteros, Facultad de Estudios Superiores Zaragoza, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, fecha de la última modificación, 27 de febrero de 2023.
Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo de la institución.