ISSN: 1405-888X ISSN-e: 2395-8723
Bacteria from the Firmicutes kingdom breathe too: the respiratory chain of Bacillus subtilis
Nombre científico: Latrodectus mactans. Nombre común: "viuda negra”. Nombre del fotógrafo: pendiente, por confirmar.
PDF (Español (España))

Keywords

Bacillus subtilis
respiratory chain
supercomplexes
Bioenergetics

How to Cite

Gutiérrez Cirlos Madrid, E. B. (2025). Bacteria from the Firmicutes kingdom breathe too: the respiratory chain of Bacillus subtilis. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.700

Abstract

Bacillus subtilis is a rod-shaped bacterium that is found in soil, water or in food. It is a Gram-positive bacterium with a single membrane and cytochrome c has no compartment, but it has a cytochrome oxidase. It doesn´t cause harm to humans and some species are used to improve human microbiota. This species is the most studied Gram-positive bacteria. In this review the different protein complexes that form the electron transport chain of B. subtilis are reviewed focused on the different associations that can occur between them. Also, the review focuses on the regulation of their expression and possible repercussions to their function and association with other proteins from the membrane. With this review, the intention is to give a general view of this very special bacteria and the importance of studying its respiratory chain.

https://doi.org/10.22201/fesz.23958723e.2025.700
PDF (Español (España))

References

Ababneh, Q. O. & Herman, J. K. (2015). RelA Inhibits Bacillus subtilis Motility and Chaining. J. Bacteriol., 197, 128–137. https://doi.org/10.1128/JB.02063-14

Andrews, D., Mattatall, N. R., Arnold, D. & Hill, B. C. (2005). Expression, purification, and characterization of the CuA–cytochrome c domain from subunit II of the Bacillus subtilis cytochrome caa3 complex in Escherichia coli. Protein Expr. Purif., 42, 227–235. https://doi.org/10.1016/j.pep.2004.11.009

Angeles, D. M. & Scheffers, D. J. (2021). The Cell Wall of Bacillus subtilis. Curr. Issues. Mol. Biol., 41, 539–596. https://doi.org/10.21775/CIMB.041.539

Aono, S., Kato, T., Matsuki, M., Nakajima, H., Ohta, T., Uchida, T. & Kitagawa, T. (2002). Resonance Raman and Ligand Binding Studies of the Oxygen-sensing Signal Transducer Protein HemAT from Bacillus subtilis. J. Biol. Chem., 277, 13528–13538. https://doi.org/10.1074/jbc.M112256200

Arias-Cartin, R., Grimaldi, S., Arnoux, P., Guigliarelli, B. & Magalon, A. (2012). Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications. Biochim. Biophys. Acta-Bioenergetics, 1817, 1937–1949. https://doi.org/10.1016/j.bbabio.2012.04.005

Bach, J. N. & Bramkamp, M. (2013). Flotillins functionally organize the bacterial membrane. Mol. Microbiol., 88, 1205–1217. https://doi.org/10.1111/mmi.12252

Banci, L., Bertini, I., Calderone, V., Cramaro, F., Del Conte, R., Fantoni, A., Mangani, S., Quattrone, A. & Viezzoli, M. S. (2005). A prokaryotic superoxide dismutase paralog lacking two Cu ligands: From largely unstructured in solution to ordered in the crystal. Proc. Natl. Acad. Sci. U. S. A., 102, 7541–7546. https://doi.org/10.1073/pnas.0502450102

Barák, I. & Muchová, K. (2013) The Role of Lipid Domains in Bacterial Cell Processes. Int. J. Mol. Sci., 14, 4050–4065. https://doi.org/10.3390/ijms14024050

Bengtsson, J., Rivolta, C., Hederstedt, L. & Karamata, D. (1999). Bacillus subtilis Contains Two Small c-Type Cytochromes with Homologous Heme Domains but Different Types of Membrane Anchors. J. Biol. Chem., 274, 26179–26184. https://doi.org/10.1074/jbc.274.37.26179

Bergsma, J., Strijker, R., Alkema, J. Y., Seijen, H. G. & Konings, WN. (1981). NADH Dehydrogenase and NADH Oxidation in Membrane Vesicles from Bacillus subtilis. Eur. J. Biochem., 120, 599–606. https://doi.org/10.1111/j.1432-1033.1981.tb05742.x

Bergsma, J., Meihuizen, K. E., Van Oeveren, W. & Konings, W. N. (1982). Restoration of NADH Oxidation with Menaquinones and Menaquinone Analogues in Membrane Vesicles from the Menaquinone-Deficient Bacillus subtilis aroD. Eur. J. Biochem., 125, 651–657. https://doi.org/10.1111/j.1432-1033.1982.tb06732.x

Bergsma, J., Donen, M. B. M. & Konings, W. N. (2005). Purification and Characterization of NADH Dehydrogenase from Bacillus subtilis. Eur. J. Biochem., 128, 151–157. https://doi.org/10.1111/j.1432-1033.1982.tb06945.x

Bhavsar, A. P. & Brown, E. D. (2006). Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol. Microbiol., 60, 1077–90. https://doi.org/10.1111/j.1365-2958.2006.05169.x

Bishop, T. & Ratcliffe, P. J. (2020). Genetic basis of oxygen sensing in the carotid body: HIF2α and an isoform switch in cytochrome c oxidase subunit 4. Sci. Signal., 13, https://doi.org/10.1126/scisignal.aba1302

Biswas, R., Martinez, R. E., Göhring, N., Schlag, M., Josten, M., Xia, G., Hegler, F., Gekeler, C., Gleske, A. K., Götz, F., Sahl, H. G., Kappler, A. & Peschel, A. (2012). Proton-Binding Capacity of Staphylococcus aureus Wall Teichoic Acid and Its Role in Controlling Autolysin Activity. PLoS. One., 7, e41415. https://doi.org/10.1371/journal.pone.0041415

Bleier, L. & Dröse, S. (2013). Superoxide generation by complex III: From mechanistic rationales to functional consequences. Biochim. Biophys. Acta-Bioenergetics., 1827, 1320–1331. https://doi.org/10.1016/j.bbabio.2012.12.002

Blencke, H-M, Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003). Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng., 5, 133–149. https://doi.org/10.1016/S1096-7176(03)00009-0

Bosak, T., Losick, R. M. & Pearson, A. (2008). A polycyclic terpenoid that alleviates oxidative stress. Proc. Nat. Acad. Sci. U. S. A., 105, 6725–6729. https://doi.org/10.1073/pnas.0800199105

Breyton, C. (2000). The cytochrome b6f complex: structural studies and comparison with the bc1 complex. Biochim. Biophys. Acta-Bioenergetics, 1459, 467–474. https://doi.org/10.1016/S0005-2728(00)00185-7

Bsat, N., Chen, L. & Helmann, J. D. (1996). Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol., 178, 6579–6586. https://doi.org/10.1128/jb.178.22.6579-6586.1996

Bukowska-Faniband, E. & Hederstedt, L. (2017). Transpeptidase activity of penicillin-binding protein SposVDsc in peptidoglycan synthesis conditionally depends on the disulfide reductase S to A. Mol. Microbiol., 105, 98–114. https://doi.org/10.1111/mmi.13689

Choi, S-K. & Saier, M. H. (2006). Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J. Mol. Microbiol. Biotechnol., 11, 104–10. https://doi.org/10.1159/000092822

Chumsakul, O., Anantsri, D. P., Quirke, T., Oshima, T., Nakamura, K., Ishikawa, S. & Nakano, M. M. (2017). Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J. Bacteriol., 199(13), e00086-17. https://doi.org/10.1128/JB.00086-17

Cooper, D. R., Surendranath, Y., Devedjiev, Y., Bielnicki, J. & Derewenda, Z. S. (2007). Structure of the Bacillus subtilis OhrB hydroperoxide-resistance protein in a fully oxidized state. Acta Crystallogr. D. Biol. Crystallogr., 63, 1269–1273. https://doi.org/10.1107/S0907444907050226

David, P. S., Morrison, M. R., Wong, S.L. & Hill, B. C. (1999). Expression, purification, and characterization of recombinant forms of membrane-bound cytochrome c-550nm from Bacillus subtilis. Protein Expr. Purif., 15, 69–76. https://doi.org/10.1006/prep.1998.1001

de Vrij, W. & Konings, W. N. (1987). Kinetic characterization of cytochrome c oxidase from Bacillus subtilis. Eur. J. Biochem., 166, 581–7. https://doi.org/10.1111/j.1432-1033.1987.tb13553.x

DeLoughery, A., Lalanne, J-B., Losick, R. & Li, G-W. (2018). Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proc. Nat. Acad. Sci. U. S. A., 115, E5585–E5594. https://doi.org/10.1073/pnas.1803283115

Deutscher, J., Galinier, A. & Martin-Verstraete, I. (2014). Carbohydrate Uptake and Metabolism. In: Bacillus subtilis and Its Closest Relatives. ASM Press, Washington, DC, USA, pp 129–150

Engelmann, S. & Hecker, M. (1996). Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. FEMS Microbiol. Lett., 145, 63–69. https://doi.org/10.1111/j.1574-6968.1996.tb08557.x

Eymann, C., Homuth, G., Scharf, C. & Hecker, M. (2002). Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol., 184, 2500–2520. https://doi.org/10.1128/JB.184.9.2500-2520.2002

Falk, S. P., Noah, J. W. & Weisblum, B. (2010). Screen for inducers of autolysis in Bacillus subtilis. Antimicrob. Agents Chemother., 54, 3723–9. https://doi.org/10.1128/AAC.01597-09

Fang, J. & Beattie, D. S. (2003). External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med., 34, 478–488. https://doi.org/10.1016/S0891-5849(02)01328-X

Faulkner, M. J., Ma, Z., Fuangthong, M. & Helmann, J. D. (2012). Derepression of the Bacillus subtilis PerR Peroxide Stress Response Leads to Iron Deficiency. J. Bacteriol., 194, 1226–1235. https://doi.org/10.1128/JB.06566-11

Fujita, Y. (2009). Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis. Biosci. Biotechnol. Biochem., 73, 245–259. https://doi.org/10.1271/bbb.80479

Gaballa, A., Su, T. T. & Helmann, J. D. (2021). The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol., 42, 101935. https://doi.org/10.1016/j.redox.2021.101935

Galperin, M. Y., Yutin, N., Wolf, Y. I., Vera Alvarez, R. & Koonin, E. V. (2022). Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J. Bacteriol., 204, e0007922. https://doi.org/10.1128/jb.00079-22

García, L. M., Contreras-Zentella, M. L., Jaramillo R, Benito-Mercadé, M. C., Mendoza-Hernández, G., del Arenal, I. P., Membrillo-Hernández, J. & Escamilla, J. E. (2008). The succinate:menaquinone reductase of Bacillus cereus-Characterization of the membrane-bound and purified enzyme. Can. J. Microbiol., 54, 456–466. https://doi.org/10.1139/W08-037

García Montes de Oca, L. Y. J., Cabellos Avelar, T., Picón Garrido, G. I., Chagoya-López, A., Delgado Buenrostro, N. L., Chirino-López, Y. I., Gómez-Lojero, C. & Gutiérrez-Cirlos, E. B. (2016). Cardiolipin deficiency causes a dissociation of the b6c:caa3 megacomplex in B. subtilis membranes. J. Bioenerg. Biomembr., 48, 451–467. https://doi.org/10.1007/s10863-016-9671-y

García Montes de Oca, L. Y. J., Chagolla-López, A., González de la Vara, L., Cabellos-Avelar, T., Gómez-Lojero, C. & Gutiérrez-Cirlos, E. B. (2012). The composition of the Bacillus subtilis aerobic respiratory chain supercomplexes. J. Bioenerg. Biomembr., 44, 473–486. https://doi.org/10.1007/s10863-012-9454-z

Geissler, A. S., Poulsen, L. D., Doncheva, N. T., Anthon, C., Seemann, S. E., González-Tortuero, E., Breüner, A., Jensen, L. J., Hjort, C., Vinther, J. & Gorodkin, J. (2022). The impact of PrsA over-expression on the Bacillus subtilis transcriptome during fed-batch fermentation of alpha-amylase production. Front. Microbiol., 13, 909493. https://doi.org/10.3389/fmicb.2022.909493

Geng, H., Zuber, P. & Nakano, M. M. (2007). Regulation of Respiratory Genes by ResD–ResE Signal Transduction System in Bacillus subtilis. Methods in Enzymology., Academic Press Inc., pp 448–464

Gong, H., Li, J., Xu, A., Tang, Y., Ji, W., Gao, R., Wang, S., Yu, L., Tian, C., Li, J., Yen, H. Y., Man Lam, S., Shui, G., Yang, X., Sun, Y., Li, X., Jia, M., Yang, C., Jiang, B., Lou, Z., Robinson, C.V., Wong, L. L., Guddat, L.W., Sun, F., Wang, Q. & Rao, Z. (2018). An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 362(6418), eaat8923. https://doi.org/10.1126/science.aat8923

Gong, H., Gao, Y., Zhou, X., Xiao, Y., Wang, W., Tang, Y., Zhou, S., Zhang, Y., Ji, W., Yu, L., Tian, C., Lam, S. M., Shui, G., Guddat, L.W., Wong, L. L., Wang, Q. & Rao, Z. (2020). Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nat. Commun., 11, 4245. https://doi.org/10.1038/s41467-020-18011-9

Guo, H., Suzuki, T. & Rubinstein, J. L., (2019). Structure of a bacterial ATP synthase. Elife, 8, e43128 https://doi.org/10.7554/eLife.43128

Gyan, S., Shiohira, Y., Sato, I., Takeuchi, M. & Sato, T. (2006). Regulatory loop between redox sensing of the NADH/NAD+ ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J. Bacteriol., 188, 7062–7071. https://doi.org/10.1128/JB.00601-06

Haegerhaell, C., Aasa, R., Von Wachenfeldt, C. & Hederstedt, L. (1992). Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry, 31, 7411–7421. https://doi.org/10.1021/bi00147a028

Härtig, E. & Jahn, D. (2012). Regulation of the Anaerobic Metabolism in Bacillus subtilis. Adv. Microb. Physiol., pp 195–216. DOI: 10.1016/B978-0-12-394423-8.00005-6.

Hederstedt, L., Maguire, J. J., Waring, A. J. & Ohnishi, T. (1985). Characterization by electron paramagnetic resonance and studies on subunit location and assembly of the iron-sulfur clusters of Bacillus subtilis succinate dehydrogenase. J. Biol. Chem., 260, 5554–5562. Me parece que esta Referencia va después de Hederstedt (2021)

Hederstedt, L. (1986). [38] Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods in Enzymology. pp 399–414. DOI: 10.1016/s0076-6879(86)26040-1.

Hederstedt, L. (2002). Succinate : quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. Biochim. Biophys. Acta., 1553, 74–83. DOI: 10.1016/s0005-2728(01)00231-6.

Hederstedt, L. (2021). Molecular Biology of Bacillus subtilis Cytochromes anno 2020. Biochemistry (Moscow), 86, 8–21. https://doi.org/10.1134/S0006297921010028

Heikal, A., Nakatani, Y., Dunn, E., Weimar, M. R., Day, Baker, E. N., Lott, J. S., Sazanov, L. A. & Cook, G. M. (2014). Structure of the bacterial type II NADH dehydrogenase: A monotopic membrane protein with an essential role in energy generation. Mol. Microbiol., 91, 950–964. https://doi.org/10.1111/mmi.12507

Henares, B., Kommineni, S., Chumsakul, O., Ogasawara, N., Ishikawa, S. & Nakano, S. S. (2014). The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. J. Bacteriol., 196, 493–503. https://doi.org/10.1128/JB.01166-13

Hey-Mogensen, M., Goncalves, R. L. S., Orr, A. L. & Brand, M. D. (2014). Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic. Biol. Med., 72, 149–155. https://doi.org/10.1016/j.freeradbiomed.2014.04.007

Hill, B. C. & Peterson, J. (1998). Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis. Arch. Biochem. Biophys., 350, 273–282. https://doi.org/10.1006/abbi.1997.0528

Hinkle, P. C. (2005). P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta–Bioenergetics, 1706, 1–11. https://doi.org/10.1016/j.bbabio.2004.09.004

Hoffmann, T., Troup, B., Szabo, A., Hungerer, C. & Jahn, D. (1995). The anaerobic life of Bacillus subtilis: Cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett., 131, 219–225. https://doi.org/10.1111/j.1574-6968.1995.tb07780.x

Holmberg, C., Beijer L., Rutberg, B. & Rutberg, L. (1990) Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J. Gen. Microbiol., 136, 2367–2375. https://doi.org/10.1099/00221287-136-12-2367

Höper, D., Völker, U. & Hecker, M. (2005). Comprehensive Characterization of the Contribution of Individual SigB-Dependent General Stress Genes to Stress Resistance of Bacillus subtilis. J. Bacteriol., 187, 2810–2826. https://doi.org/10.1128/JB.187.8.2810-2826.2005

Hughes, A. M., Darby, J. F., Dodson, E. J., Wilson, S. J., Turkenburg, J. P., Thomas, G.H. & Wilkinson, A. J. (2022). Peptide transport in Bacillus subtilis – structure and specificity in the extracellular solute binding proteins OppA and DppE. Microbiology (Reading), 168, https://doi.org/10.1099/mic.0.001274

Imlay, J. A. (2019). Where in the world do bacteria experience oxidative stress? Environ. Microbiol., 21, 521–530 https://doi.org/10.1111/1462-2920.14445

Inaoka, T., Matsumura, Y. & Tsuchido, T. (1999). SodA and Manganese Are Essential for Resistance to Oxidative Stress in Growing and Sporulating Cells of Bacillus subtilis. J. Bacteriol., 181, 1939–1943. https://doi.org/10.1128/JB.181.6.1939-1943.1999

Iverson, T. M., Singh, P. K. & Cecchini, G. (2023). An evolving view of complex II—noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J. Biol. Chem., 299, 104761. https://doi.org/10.1016/j.jbc.2023.104761

Johnson, L. A. & Hug, L. A. (2019). Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radic. Biol. Med., 140, 93–102. https://doi.org/10.1016/j.freeradbiomed.2019.03.032

Jolliffe, L. K., Doyle, R. J. & Streips, U. N. (1981). The energized membrane and cellular autolysis in Bacillus subtilis. Cell., 25, 753–763. https://doi.org/10.1016/0092-8674(81)90183-5

Jünemann, S. (1997). Cytochrome bd terminal oxidase. Biochim. Biophys. Acta Bioenergetics, 1321, 107–127. https://doi.org/10.1016/S0005-2728(97)00046-7

Khanna, K., Lopez-Garrido, J. & Pogliano, K. (2020). Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu. Rev. Microbiol., 8, 361-386. https://doi.org/10.1146/annurev-micro-022520-074650

Komori, H., Seo, D., Sakurai, T. & Higuchi, Y. (2010). Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity. Protein Sci., 19(12), 2279-90. DOI: 10.1002/pro.508.

Kovács, Á.T. (2019). Bacillus subtilis. Trends. Microbiol., 27, 724–725. https://doi.org/10.1016/j.tim.2019.03.008

Kröger, A. (1978). [56] Determination of contents and redox states of ubiquinone and menaquinone. In: Methods in Enzymology. pp 579–591

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N. M., Choi, S. K., Codani, J. J., Connerton, I. F., Cummings, N. J., Daniel, R. A., Denizot, F., Devine, K. M., Düsterhöft, A., Ehrlich, S. D., Emmerson, P.T., Entian, K. D., Errington, J., Fabret, C., Ferrari, E., Foulger, D., Fritz, C., Fujita, M., Fujita, Y., Fuma, S., Galizzi, A., Galleron, N., Ghim, S. Y., Glaser, P., Goffeau, A., Golightly, E. J., Grandi, G., Guiseppi, G., Guy, B. J., Haga, K., Haiech, J., Harwood, C. R., Hènaut, A., Hilbert, H., Holsappel, S., Hosono, S., Hullo, M. F., Itaya, M., Jones, L., Joris, B., Karamata, D., Kasahara, Y., Klaerr-Blanchard, M., Klein, C., Kobayashi, Y., Koetter, P., Koningstein, G., Krogh, S., Kumano, M., Kurita, K., Lapidus, A., Lardinois, S., Lauber, J., Lazarevic, V., Lee, S. M., Levine, A., Liu, H., Masuda, S., Mauël, C., Médigue, C., Medina, N., Mellado, R. P., Mizuno, M., Moestl, D., Nakai, S., Noback, M., Noone, D., O’Reilly, M., Ogawa, K., Ogiwara, A., Oudega, B., Park, S. H., Parro, V., Pohl, T. M., Portetelle, D., Porwollik, S., Prescott, A. M., Presecan, E., Pujic, P., Purnelle, B., Rapoport, G., Rey, M., Reynolds, S., Rieger, M., Rivolta, C., Rocha, E., Roche, B., Rose, M., Sadaie, Y., Sato, T., Scanlan, E., Schleich, S., Schroeter, R., Scoffone, F., Sekiguchi, J., Sekowska, A., Seror, S. J., Serror, P., Shin, B. S., Soldo, B., Sorokin, A., Tacconi, E., Takagi, T., Takahashi, H., Takemaru, K., Takeuchi, M., Tamakoshi, A., Tanaka, T., Terpstra, P., Tognoni, A., Tosato, V., Uchiyama, S., Vandenbol, M., Vannier, F., Vassarotti, A., Viari, A., Wambutt, R., Wedler, E., Wedler, H., Weitzenegger, T., Winters, P., Wipat, A., Yamamoto, H., Yamane, K., Yasumoto, K., Yata, K., Yoshida, K., Yoshikawa, H. F., Zumstein, E., Yoshikawa, H. & Danchin, A. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256. https://doi.org/10.1038/36786

Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W.A. (2003). Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity. Science, 302, 1009-14. https://doi.org/10.1126/science.1090165

Kutoh, E. & Sone, N. (1988). Quinol-cytochrome c oxidoreductase from the thermophilic bacterium PS3. Purification and properties of a cytochrome bc1(b6f) complex. J. Biol. Chem., 263, 9020–9026.

Larsson, J. T., Rogstam, A. & von Wachenfeldt, C. (2005), Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. Microbiology (NY), 151, 3323–3335. https://doi.org/10.1099/mic.0.28124-0

Le Brun, N. E., Bengtsson, J. & Hederstedt, L. (2000). Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol., 36, 638–650. https://doi.org/10.1046/j.1365-2958.2000.01883.x

Lemma, E., Unden, G. & Kröger, A. (1990). Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch. Microbiol., 155, 62–67. https://doi.org/10.1007/BF00291276

Liebl, U., Pezennec, S., Riedel, A., Kellner, E. & Nitschke, W. (1992). The Rieske FeS center from the gram-positive bacterium PS3 and its interaction with the menaquinone pool studied by EPR. J. Biol. Chem., 267, 14068–14072

Liu, X. & Taber, H. W. (1998). Catabolite Regulation of the Bacillus subtilis ctaBCDEF Gene Cluster. J. Bacteriol., 180, 6154–6163. https://doi.org/10.1128/JB.180.23.6154-6163.1998.

Lu, J. & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic. Biol. Med., 66, 75–87 DOI: 10.1016/j.freeradbiomed.2013.07.036.

Ludwig, H. & Stülke, J. (2001). The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding. FEMS Microbiol. Lett., 203, 125–129. https://doi.org/10.1016/S0378-1097(01)00357-3

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Sattley, W. M. & Stahl, D. A. (2017). Brock Biology of Microorganisms, 14 th ed. Inc.2015 ISBN: 978-0-321-89739-8.

Matsson, M., Tolstoy, D., Aasa, R. & Hederstedt, L. (2000). The distal heme center in Bacillus subtilis succinate:quinone reductase is crucial for electron transfer to menaquinone. Biochemistry, 39, 8617–8624. https://doi.org/10.1021/bi000271m

Meier, T., Morgner, N., Matthies, D., Pogoryelov, D., Keis, S., Cook, G. M., Dimroth, P. & Brutschy, B. (2007). A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol. Microbiol., 65, 1181-92. https://doi.org/10.1111/j.1365-2958.2007.05857.x

Melin, L., Magnusson, K. & Rutberg, L. (1987). Identification of the promoter of the Bacillus subtilis sdh operon. J. Bacteriol., 169, 3232–3236. https://doi.org/10.1128/jb.169.7.3232-3236.1987

Melin, L., Rutberg, L. & von Gabain, A. (1989). Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol., 171, 2110–2115. https://doi.org/10.1128/jb.171.4.2110-2115.1989

Messner, K. R. & Imlay, J. A. (1999). The Identification of Primary Sites of Superoxide and Hydrogen Peroxide Formation in the Aerobic Respiratory Chain and Sulfite Reductase Complex of Escherichia coli. J. Biol. Chem., 274, 10119–10128. https://doi.org/10.1074/jbc.274.15.10119

Miki, K. & Okunuki, K. (1969). Cytochromes of Bacillus subtilis II. Purification and spectral properties of cytochromes c-550 and c-554. J. Biochem., 66, 831–843. https://doi.org/10.1093/oxfordjournals.jbchem.a129214

Mileykovskaya, E. & Dowhan, W. (2009). Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophysi. Acta-Biomembranes, 1788, 2084–2091. https://doi.org/10.1016/j.bbamem.2009.04.003

Molle, V., Fujita, M., Jensen, S. T., Eichenberger, P., González-Pastor, J. E., Liu, J. S. & Losick, R. (2003). The Spo0A regulon of Bacillus subtilis. Mol. Microbiol., 50, 1683–1701. https://doi.org/10.1046/j.1365-2958.2003.03818.x

Moreno-Domínguez, A., Ortega-Sáenz, P., Gao, L., Colinas, O., García-Flores, P., Bonilla-Henao, V., Aragonés, J., Hüttemann, M., Grossman, L. I., Weissmann, N., Sommer, N., López-Barneo, J. (2020). Acute O2 sensing through HIF2α-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Sci. Signal., 13, 9452. https://doi.org/10.1126/scisignal.aay9452

Moreno, M. S., Schneider B. L., Maile, R. R., Weyler, W. & Saier Jr., M. H. (2001). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol., 39, 1366–1381. https://doi.org/10.1111/j.1365-2958.2001.02328.x

Moszer, I. (2002). SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res., 30, 62–65. https://doi.org/10.1093/nar/30.1.62

Muchová, K., Wilkinson, A. J. & Barák, I. (2011). Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiol. Lett., 325, 92–8. https://doi.org/10.1111/j.1574-6968.2011.02417.x

Nakano, M. M. & Zhu, Y. (2001). Involvement of ResE Phosphatase Activity in Down-Regulation of ResD-Controlled Genes in Bacillus subtilis during Aerobic Growth. J. Bacteriol., 183, 1938–1944. https://doi.org/10.1128/JB.183.6.1938-1944.2001

Nakano, M. M. & Zuber, P. (1998). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu. Rev. Microbiol., 52, 165–190. https://doi.org/10.1146/annurev.micro.52.1.165

Nakatani, Y., Jiao, W., Aragão, D., Shimaki, Y., Petri, Y., Parker, E. J. & Cook, G. M. (2017). Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å. Acta Crystallogr. F: Struct. Biol. Commun., 73, 541–549. https://doi.org/10.1107/S2053230X17013073

Nelson, D. L. & Cox, M. M. (2021). Lehninger principles of biochemistry. Macmillan Learning. 8th edn. 1248 p.p.

Nicholls, D. G. & Ferguson, S. J. (2013a). The Chemiosmotic Proton Circuit in Isolated Organelles. In: Bioenergetics. Elsevier, pp 53–87

Nicholls, D. G. & Ferguson S. J. (2013b) Respiratory Chains. In: Bioenergetics. Elsevier, pp 91–157

Nicolas, P., Mäder, U., Dervyn, E., Leduc, A., Pigeonneau, N., Bidnenko, E., Marchadier, E., Hoebeke, M., Aymerich, S., Becher, D., Bisicchia, P., Botella, E., Delumeau, O., Doherty, G., Denham, E. L., Fogg, M. J., Fromion, V., Goelzer, A., Hansen, A., Härtig, E., Harwood, C. R., Homuth, G., Jarmer, H., Jules, M., Klipp, E., Le Chat, L., Lecointe, F., Lewis, P., Liebermeister, W., March, A., Mars, R. A., Nannapaneni, P., Noone, D., Pohl, S., Rinn, B., Rügheimer, F., Sappa, P. K., Samson, F., Schaffer, M., Schwikowski, B., Steil, L., Stülke, J., Wiegert, T., Devine, K. M., Wilkinson, A. J., van Dijl, J. M., Hecker, M., Völker, U., Bessières, P. & Noirot, P. (2012). Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis. Science, 335, 1103–1106. https://doi.org/10.1126/science.1206848

Ollinger, J., Song, K-B., Antelmann, H., Hecker, M. & Helmann, J. D. (2006). Role of the Fur Regulon in Iron Transport in Bacillus subtilis. J. Bacteriol., 188, 3664–3673. https://doi.org/10.1128/JB.188.10.3664-3673.2006

Parker, M. J., Zhu, X. & Stubbe, J. (2014). Bacillus subtilis Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions. Biochemistry, 53, 766–776. https://doi.org/10.1021/bi401056e

Pechter, K. P., Meyer, F. M., Serio, A.W., Stülke, J. & Sonenshein, A. L. (2013). Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. J. Bacteriol., 195(7), 1525-37. DOI: 10.1128/JB.01690-12.

Pedreira, T., Elfmann, C. & Stülke, J. (2022). The current state of Subti Wiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res., 50, D875–D882. https://doi.org/10.1093/nar/gkab943

Petersohn, A., Bernhardt, J., Gerth, U., Höper, D., Koburger, T., Völker, U. & Hecker, M. (1999a). Identification of ς B -Dependent Genes in Bacillus subtilis Using a Promoter Consensus-Directed Search and Oligonucleotide Hybridization. J. Bacteriol., 181, 5718–5724. https://doi.org/10.1128/JB.181.18.5718-5724.1999

Petersohn, A., Engelmann, S., Setlow, P. & Hecker, M. (1999b). The katX gene of Bacillus subtilis is under dual control of σB and σF. Mol. Gen. Genet., 262, 173–179. https://doi.org/10.1007/s004380051072

Picón Garrido, G. I., García García, A. P., González de la Vara, L., Chagolla-López, A., Gómez-Lojero, C. & Gutiérrez-Cirlos, E. B. (2022). Separation and analysis of Bacillus subtilis respiratory chain complexes. J. Bioenerg. Biomembr., 54, 251–271. https://doi.org/10.1007/S10863-022-09951-6/

Puri-Taneja, A., Schau, M., Chen, Y. & Hulett, F. M. (2007). Regulators of the Bacillus subtilis cydABCD Operon: Identification of a Negative Regulator, CcpA, and a Positive Regulator, ResD. J. Bacteriol., 189, 3348–3358. https://doi.org/10.1128/JB.00050-07

Richardson, D. J. (2000). Bacterial respiration: a flexible process for a changing environment 1999 Fleming Lecture (Delivered at the 144th meeting of the Society for General Microbiology, 8 September 1999). Microbiology (NY), 146, 551–571. https://doi.org/10.1099/00221287-146-3-551

Rosignoli, S. & Paiardini, A. (2022). DockingPie: a consensus docking plugin for PyMOL. Bioinformatics., 38, 4233–4234. https://doi.org/10.1093/bioinformatics/btac452

Sahoo, S., Rao, K. K. & Suraishkumar, G. K. (2006) Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtilis. Biotechnol. Bioeng., 94, 118–127. https://doi.org/10.1002/bit.20835

Santana, M., Kunst, F., Hullo, M. F., Rapoport, G., Danchin, A. & Glaser, P. (1992). Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. J. Biol. Chem., 267, 10225–31. PMID: 1316894

Santana, M., Ionescu, M. S., Vertes, A., Longin, R., Kunst, F., Danchin, A. & Glaser, P. (1994). Bacillus subtilis FOF1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J. Bacteriol., 176, 6802–6811. https://doi.org/10.1128/jb.176.22.6802-6811.1994

Saraste, M., Metso, T., Nakari, T., Jalli, T., Lauraeus, M. & Van der Oost, J. (1991). The Bacillus subtilis cytochrome- c oxidase. Eur. J. Biochem., 195, 517–525. https://doi.org/10.1111/j.1432-1033.1991.tb15732.x

Sarkar, P. & Suraishkumar, G. K. (2011). pH and Temperature Stresses in Bioreactor Cultures: Intracellular Superoxide Levels. Ind. Eng. Chem. Res., 50, 13129–13136. https://doi.org/10.1021/ie200081k

Schau, M., Chen, Y. & Hulett, F. M. (2004). Bacillus subtilis YdiH Is a Direct Negative Regulator of the cydABCD Operon. J. Bacteriol., 186, 4585–4595. https://doi.org/10.1128/JB.186.14.4585-4595.2004

Schirawski, J. & Unden, G. (1998). Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur. J. Biochem., 257, 210–215. https://doi.org/10.1046/j.1432-1327.1998.2570210.x

Schleifer, K-H. (2009). Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: Systematic Bacteriology. Springer New York, New York, NY, pp 19–1317

Schnorpfeil, M., Janausch, I. G., Biel, S., Kröger, A. & Unden, G. (2001). Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur. J. Biochem., 268, 3069–3074. https://doi.org/10.1046/j.1432-1327.2001.02202.x

Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol., 101, 514-25. https://doi.org/10.1111/j.1365-2672.2005.02736.x

Shin, W-H. & Kihara, D. (2019). 55 Years of the Rossmann Fold. In: Kister AE (ed) Protein Supersecondary Structures. Methods and Protocols. pp 1–13.

Slepecky, R. A. & Hemphill, H. E. (2006). The Genus Bacillus—Nonmedical. In: The Prokaryotes. Springer US, New York, NY, pp 530–562

Smith, T. J., Blackman, S. A. & Foster, S. J. (2000). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology (NY), 146, 249–262. https://doi.org/10.1099/00221287-146-2-249

Sonenshein, A. L. (2007). Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol., 5, 917–927. https://doi.org/10.1038/nrmicro1772

Soriano, G. M., Ponamarev, M. V., Carrell, C. J., Xia, D., Smith, J. L. & Cramer, W. A. (1999). Comparison of the cytochrome bc1 complex with the anticipated structure of the cytochrome b6f complex: De plus Ca change de plus c’est la meme chose. J. Bioenerg. Biomembr., 31, 201–214. https://doi.org/10.1023/a:1005463527752

Sousa, P. M. F., Videira, M. A. M., Bohn, A., Hood, B. L., Conrads, T. P., Goulao, L. F. & Melo, A. M. P. (2012). The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes. Microbiology (Reading), 158, 2408–2418. https://doi.org/10.1099/MIC.0.056531-0

Sousa, P. M. F., Videira, M. A. & Melo A. M. (2013a). The formate: Oxygen oxidoreductase supercomplex of Escherichia coli aerobic respiratory chain. FEBS Lett., 587, 2559–2564. https://doi.org/10.1016/j.febslet.2013.06.031

Sousa, P. M. F., Videira, M. A. M., Santos, F. A. S., Hood, B. L. Conrads, T. P. & Melo, A. M. P. (2013b). The bc:caa3 supercomplexes from the Gram-positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization? Arch. Biochem. Biophys., 537, 153–160. https://doi.org/10.1016/j.abb.2013.07.012

Stroebel, D., Choquet, Y., Popot, J. L. & Picot, D. (2003). An atypical haem in the cytochrome b6f complex. Nature, 426, 413–418. https://doi.org/10.1038/nature02155

Stülke, J. & Hillen, W. (2000). Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol., 54, 849–80. https://doi.org/10.1146/annurev.micro.54.1.849

Sun, G., Sharkova, E., Chesnut, R., Birkey, S., Duggan, M. F., Sorokin, A., Pujic, P., Ehrlich, S. D. & Hulett, F. M. (1996). Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol., 178, 1374–1385. https://doi.org/10.1128/jb.178.5.1374-1385.1996

Svensson, B. & Hederstedt, L. (1994). Bacillus subtilis CtaA is a heme-containing membrane protein involved in heme A biosynthesis. J. Bacteriol., 176, 6663–6671. https://doi.org/10.1128/jb.176.21.6663-6671.1994

Takazaki, H., Kusumoto, T., Ishibashi, W., Yasunaga, T. & Sakamoto, J. (2022). Extended supercomplex contains type-II NADH dehydrogenase, cytochrome bcc complex, and aa3 oxidase in the respiratory chain of Corynebacterium glutamicum. J. Biosci. Bioeng., 133, 76–82. https://doi.org/10.1016/j.jbiosc.2021.10.004

Thauer, R. K., Jungermann, K. & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 41, 100–180. https://doi.org/10.1128/MMBR.41.1.100-180.1977

The UniProt Consortium. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res., 51, D523–D531. https://doi.org/10.1093/NAR/GKAC1052

Tossounian, M. A., Baczynska, M., Dalton, W., Peak-Chew, S. Y., Undzenas, K., Korza, G., Filonenko, V., Skehel, M., Setlow, P. & Gout, I. (2023). Bacillus subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress. Antioxidants., 12, 938. https://doi.org/10.3390/antiox12040938

von Wachenfeldt, C. & Hederstedt, L. (1993). Physico-chemical characterisation of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome c-550. Eur. J. Biochem., 212, 499-509. https://doi.org/10.1111/j.1432-1033.1993.tb17687.x

Wang, E., Ikonen, T. P., Knaapila, M., Svergun, D., Logan, D. T. & von Wachenfeldt, C. (2011). Small-angle X-ray Scattering Study of a Rex Family Repressor: Conformational Response to NADH and NAD+ Binding in Solution. J. Mol. Biol., 408, 670–683. https://doi.org/10.1016/j.jmb.2011.02.050

Wang, S. T., Setlow, B., Conlon, E. M., Lyon, J. L., Imamura, D., Sato, T., Setlow, P., Losick, R. & Eichenberger, P. (2006). The Forespore Line of Gene Expression in Bacillus subtilis. J. Mol. Biol., 358, 16–37. https://doi.org/10.1016/j.jmb.2006.01.059

Wendrich, T. M. & Marahiel, M. A. (1997). Cloning and characterization of a relA / spoT homologue from Bacillus subtilis. Mol. Microbiol., 26, 65–79. https://doi.org/10.1046/j.1365-2958.1997.5511919.x

Winstedt, L. & von Wachenfeldt, C. (2000). Terminal Oxidases of Bacillus subtilis Strain 168: One Quinol Oxidase, Cytochrome aa3 or Cytochrome bd, Is Required for Aerobic Growth. J. Bacteriol., 182, 6557–6564. https://doi.org/10.1128/JB.182.23.6557-6564.2000

Wittig, I., Karas, M. & Schägger, H. (2007). High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes. Mol. Cell. Proteomics, 6, 1215–1225. https://doi.org/10.1074/mcp.M700076-MCP200

Xu, J., Ding, Z., Liu, B., Yi, S. M., Li, J., Zhang, Z., Liu, Y., Li, J., Liu, L., Zhou, A., Gennis, R. B. & Zhu, J. (2020). Structure of the cytochrome aa3-600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site. Proc. Natl. Acad. Sci. U. S. A., 117, 872–876. https://doi.org/10.1073/pnas.1915013117

Yagi T., Seo B. B., Nakamaru-Ogiso E., Marella M., Barber-Singh, J., Yamashita T., Kao M. C. & Matsuno-Yagi, A. (2006). Can a Single Subunit Yeast NADH Dehydrogenase (Ndi1) Remedy Diseases Caused by Respiratory Complex I Defects? Rejuvenation Res., 9, 191–197. https://doi.org/10.1089/rej.2006.9.191

Yamashita, E., Zhang, H. & Cramer, W. A. (2007). Structure of the Cytochrome b6 f Complex: Quinone Analogue Inhibitors as Ligands of Heme cn. J. Mol. Biol., 370, 39–52. https://doi.org/10.1016/j.jmb.2007.04.011

Yankovskaya, V., Horsefield, R., Törnroth, S., Luna-Chavez, C., Miyoshi, H., Léger, C., Byrne, B., Cecchini, G. & Iwata, S. (2003). Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation. Science., 299, 700–704. https://doi.org/10.1126/science.1079605

Yi, S. M., Taguchi, A. T., Samoilova, R. I., O’Malley, P. J., Gennis, R. B. & Dikanov, S. A. (2015). Plasticity in the High Affinity Menaquinone Binding Site of the Cytochrome aa 3 -600 Menaquinol Oxidase from Bacillus subtilis. Biochemistry, 54, 5030–5044. https://doi.org/10.1021/acs.biochem.5b00528

Yoshida, M., Sone, N., Hirata, H. & Kagawa, Y. (1975). A highly stable adenosine triphosphatase from a thermophillie bacterium. Purification, properties, and reconstitution. J. Biol. Chem., 250, 7910–6. PMID: 240842

Yu, J., Hederstedt, L. & Piggot, P. J. (1995). The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J. Bacteriol., 177, 6751–6760. https://doi.org/10.1128/jb.177.23.6751-6760.1995

Yu, J. & Le Brun, N. E. (1998). Studies of the Cytochrome Subunits of Menaquinone:Cytochrome c Reductase (bc Complex) of Bacillus subtilis. J. Biol. Chem., 273, 8860–8866. https://doi.org/10.1074/jbc.273.15.8860

Zhang, S. & Haldenwang, W. G. (2003). RelA is a component of the nutritional stress activation pathway of the Bacillus subtilis transcription factor σB. J. Bacteriol., 185, 5714–5721. https://doi.org/10.1128/JB.185.19.5714-5721.2003

Creative Commons License

TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

Downloads

Download data is not yet available.