Abstract
The nance (Byrsonima crassifolia) is renowned for its diverse applications in food, medicine, and pharmaceuticals. However, due to limited industrialization and distribution, around 60% of total production is lost. This study aims to utilize nance fruit as a valuable source of aqueous extracts for controlling Colletotrichum asianum. The research involves quantifying and identifying phenolic compounds (PC) in the extracts and conducting in vitro tests to evaluate mycelial growth, sporulation, and germination. Key PC identified in the extracts include gallic acid, catechin, and gallocatechin. Four treatments with varying aqueous extract concentrations (0%, 1%, 0.5%, and 0.1%) were used. The most notable mycelial growth inhibition occurred at 0.1%, with a 34.7% ± 1.60. In the sporulation test, the 1% concentration showed the lowest spore count at 2.5×105. The 1% concentration also exhibited the highest germination inhibition 89%. The assessment of antifungal potential in bioactive compounds from nance (Byrsonima crassifolia) exhibited significant in vitro antifungal efficacy against Colletotrichum asianum, a critical pathogen in mango cultivation causing anthracnose. Nance aqueous extracts show promise as an eco-friendly alternative for anthracnose treatment in mango cultivation.
References
Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D. & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry, 166, 179–191. https://doi.org/10.1016/j.foodchem.2014.06.011
Ahmadi, S., Ahmadi, G. & Ahmadi, H. (2022). A review on antifungal and antibacterial activities of some medicinal plants. Micro Nano Bio Aspects, 1(1), 10–17. https://doi.org/10.22034/mnba.2022.150563.
Alvarez-Parrilla, E., Rosa, L. A. D. La, Amarowicz, R. & Shahidi, F. (2012). Protective effect of fresh and processed Jalapeño and Serrano peppers against food lipid and human LDL cholesterol oxidation. Food Chemistry, 133(3), 827–834. https://doi.org/10.1016/j.foodchem.2012.01.100.
Alves, G. L. & Franco, M. R. B. (2003). Headspace gas chromatography–mass spectrometry of volatile compounds in murici (Byrsonima crassifolia L. Rich). Journal of Chromatography A, 985(1–2), 297–301. https://doi.org/10.1016/S0021-9673(02)01398-5.
Ansari, M. A., Anurag, A., Fatima, Z. & Hameed, S. (2013). Natural phenolic compounds: a potential antifungal agent. Microb. Pathog. Strateg. Combat. Sci. Technol. Educ., 1, 1189–1195.
Arce-Reynoso, A., Mateos, R., Mendivil, E. J., Zamora-Gasga, V. M. & Sáyago-Ayerdi, S. G. (2023). Bioavailability of bioactive compounds in Hibiscus sabdariffa beverage as a potential anti-inflammatory. Food Research International, 174, 113581. https://doi.org/10.1016/j.foodres.2023.113581.
Ayala-Soto, F. E., Serna-Saldívar, S. O., García-Lara, S. & Pérez-Carrillo, E. (2014). Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids, 35, 471–475. https://doi.org/10.1016/j.foodhyd.2013.07.004
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005.
Benzie, I. F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292.
Cortés-Rivera, H. J., Blancas-Benitez, F. J., Romero-Islas, L.C., Gutiérrez-Martinez, P. & González-Estrada, R. R. (2019). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts, against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31(8), https://doi.org/613-617. 0.9755/ejfa.2019.v31.i8.1993.
De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D. & Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3), 155–168. https://doi.org/10.1016/j.fbr.2017.05.001.
Durán-Castañeda, A. C., Cardenas-Castro, A. P., Pérez-Jiménez, J., Pérez-Carvajal, A. M., Sánchez-Burgos, J. A., Mateos, R. & Sáyago-Ayerdi, S. G. (2023). Bioaccessibility of phenolic compounds in Psidium guajava L. varieties and P. friedrichsthalianum Nied. after gastrointestinal digestion. Food Chemistry, 400, 134046. https://doi.org/10.1016/j.foodchem.2022.134046.
Gautam, A. K., Singh, P. K. & Aravind, M. (2020). Defensive role of plant phenolics against pathogenic microbes for sustainable agriculture. Plant Phenolics in Sustainable Agriculture: Volume 1, 579–594. https://doi.org/10.1007/978-981-15-4890-1_25.
Gutierrez-Martinez, P., Ramos-Guerrero, A., Cabanillas-Beltran, H., Romero-Islas, J. & Cruz-Hernandez, A. (2015). Chitosan as alternative treatment to control postharvest losses of tropical and subtropical fruits. In A. Méndez-Vilas (Ed.), Science within Food: Up-to-date Advances on Research and Educational Ideas (pp. 42–47).
Li, Z. & Jennings, A. (2017). Worldwide regulations of standard values of pesticides for human health risk control: A review. International Journal of Environmental Research and Public Health, 14(7), 826. https://doi.org/10.3390/ijerph14070826.
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y. & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review. International Journal of Molecular Sciences, 22(9), 4945. https://doi.org/10.3390/ijms22094945.
Luximon-Ramma, A., Bahorun, T. & Crozier, A. (2003). Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. Journal of the Science of Food and Agriculture, 83(5), 496–502. https://doi.org/10.1002/jsfa.1365.
Mohammadi, A., Nazari, H., Imani, S. & Amrollahi, H. (2014). Antifungal activities and chemical composition of some medicinal plants. Journal de Mycologie Médicale/Journal of Medical Mycology, 24(2), e1–e8. https://doi.org/10.1016/j.mycmed.2014.02.006.
Montreau, F. R. (1972). Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. OENO One, 6(4), 397–404. https://doi.org/10.20870/oeno-one.1972.6.4.2071.
Mora, A., Parra, J., Chaverri, J. M. & Arias, M. L. (2013). Determinación de la capacidad antimicrobiana del té verde (Camellia sinensis) contra los agentes potencialmente patógenos Escherichia coli, Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, Candida albicans y Aspergillus niger. Archivos Latinoamericanos de Nutrición, 63(3), 247–253.
Morelia-Jiménez, J. A. Y., Montaño-Leyva, B., Blancas-Benitez, F. J., Romero-Islas, L. del C., Gutierrez-Martinez, P., Hernandez-Montiel, L. G., Bautista-Rosales, P. U. & González-Estrada, R. R. (2023). Coconut Mesocarp Extracts to Control Fusarium musae, the Causal Agent of Banana Fruit and Crown Rot. AgriEngineering, 5(4), 2395–2407. https://doi.org/10.3390/agriengineering5040147.
Moreno-Hernández, C. L., Zambrano-Zaragoza, M. L., Velázquez-Estrada, R. M., Sánchez-Burgos, J. A. & Gutierrez-Martinez, P. (2022). Identification of a Colletotrichum species from mango fruit and its in vitro control by GRAS compounds. Revista Mexicana de Ingeniería Química, 21(3), Bio2777–Bio2777.
Ncama, K., Mditshwa, A., Tesfay, S. Z., Mbili, N. C. & Magwaza, L. S. (2019). Topical procedures adopted in testing and application of plant-based extracts as bio-fungicides in controlling postharvest decay of fresh produce. Crop Protection, 115, 142–151. https://doi.org/10.1016/j.cropro.2018.09.016.
Oulahal, N. & Degraeve, P. (2022). Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides? Frontiers in Microbiology, 12, 753518. https://doi.org/10.3389/fmicb.2021.753518.
SIAP. (2021). Anuario Estadístico de la Producción Agrícola. (p. 1). Gobierno de México.
Simonetti, G., Brasili, E. & Pasqua, G. (2020). Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16), 3748. https://doi.org/10.3390/molecules25163748.
Sun, J., Chu, Y.-F., Wu, X. & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449–7454. https://doi.org/10.1021/jf0207530.
Toyoshima, Y., Okubo, S., Toda, M., Hara, Y. & Shimamura, T. (1994). Effect of catechin on the ultrastructure of Trichophyton mentagrophytes, Kansenshogaku zasshi The Journal of the Japanese Association for Infectious Diseases, 68(3), 295–303. https://doi.org/10.11150/kansenshogakuzasshi1970.68.295.
Usia, T., Banskota, A. H., Tezuka, Y., Midorikawa, K., Matsushige, K. & Kadota, S. (2002). Constituents of Chinese propolis and their antiproliferative activities. Journal of Natural Products, 65(5), 673–676. https://doi.org/10.1021/np010486c.
TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.