ISSN: 1405-888X ISSN-e: 2395-8723
Arachnids toxins with effect on the cardiovascular system
Nombre científico: Latrodectus mactans. Nombre común: "viuda negra”. Nombre del fotógrafo: pendiente, por confirmar.
PDF (Español (España))

Keywords

spiders
scorpions
toxins
cardiovascular system

How to Cite

García-García, M. C., Pescador-Tovar, D. L., Acosta-Buitrón, I., García-Arredondo, A., Ibarra-Alvarado, C., & Rojas-Molina, A. (2025). Arachnids toxins with effect on the cardiovascular system. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.741

Abstract

Within the class Arachnida, the most common orders are Araneae and Scorpionidae. The bite of these animals represents a health risk in many countries around the world since in some cases it causes the death of the victims. The main clinical signs that appear after spider and scorpion bites are those related to cardiovascular manifestations. Considering their clinical relevance and effects on the cardiovascular system, in the case of spiders, the bite of Latrodectus species stands out. Regarding scorpions, the stings of Tityus, Centruroides, Buthus and Leiurus species are the most relevant. The composition of arachnid venoms includes toxins that affect the cardiovascular system, such as bradykinin-potentiating peptides (BPPs), which induce an antihypertensive effect either by inhibiting the angiotensin-converting enzyme (ACE) or by activating bradykinin receptors. Recently, the isolation and characterization of BPPs has gained importance due to their potential application for the development of new drugs useful for the treatment of cardiovascular diseases, such as hypertension. This review compiles the information reported about arachnid venoms that have effects on the cardiovascular system and the mechanisms of action of the toxins involved in these effects, which are potential structural prototypes for the development of novel therapeutic agents.

https://doi.org/10.22201/fesz.23958723e.2025.741
PDF (Español (España))

References

Aboumaâd, B., Lahssaini, M., Tiger, A. & Benhassain, S. M. (2014). Clinical comparison of scorpion envenomation by Androctonus mauritanicus and Buthus occitanus in children. Toxicon, 90, 337-343. https://doi.org/10.1016/j.toxicon.2014.09.001

Abroug, F., Ouanes-Besbes, L., Tilouche, N. & Elatrous, S. (2020). Scorpion envenomation: state of the art. Intensive Care Medicine, 46, 401-410. https://doi.org/10.1007/s00134-020- 05924-8

Ahmadi, S., Knerr, J. M., Argemi, L., Bordon, K., Pucca, M. B., Cerni, F. A., Arantes, E. C., Çalışkan, F. & Laustsen, A. H. (2020). Scorpion Venom: Detriments and Benefits. Biomedicines, 8(5), 118. http://dx.doi.org/ 10.3390/biomedicines8050118

Almeida, D. D., Scortecci, K. C., Kobashi, L. S., Agnez-Lima, L. F., Medeiros, S., Silva-Junior, A. A., Junqueira-de-Azevedo, I. & Fernandes-Pedrosa, M. (2012). Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics, 13, 362. https://doi.org/ 10.1186/1471-2164-13-362

Alves-Furtado, A., Daniele-Silva, A., da Silva-Júnior, A. A. & de Freitas Fernandes-Pedrosa, M. (2020). Biology, venom composition, and scorpionism induced by brazilian scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae): A mini-review. Toxicon, 185, 36-45. https://doi.org/10.1016/j.toxicon.2020.06.01.

Barona, J., Batista, C., Zamudio, F., Gomez-Lagunas, F., Wanke, E., Otero, R. & Possani, L. (2006). Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochimica et Biophysica. Acta, 1764, 76-84. https://doi.org/10.1016/j.bbapap.2005.08.010

Batista, C., D´Suze, G., Gómez-Lagunas, F., Zamudio, F., Encarnación, S., Sevcik, C. & Possani, L. (2006). Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics, 6(12), 3718-3727. https://doi.org/10.1002/ pmic.200500525

Beraldo-Neto, E., Vigerelli, H., Coelho, G. R., da Silva, D. L., Abrahao Nencioni, A. L. & Pimenta, D. C. (2023). Unraveling and profiling Tityus bahiensis venom: Biochemical analyses of the major toxins. Journal of Proteomics, 274, 104824. https://doi.org/10.1016/j.jprot.2023.104824

Bonnet, M. S. (2004). The toxicology of Latrodectus tredecimguttatus: the Mediterranean Black Widow Spider. Homeopathy, 93(1), 27-33. https://doi.org/ 10.1016/j.homp.2003.10.001

Bordon, K. C. F., Cologna, C. T., Fornari-Baldo, E. C., Pinheiro-Júnior, E. L., Cerni, F. A., Amorim, F. G., Anjolette, F. A. P., Cordeiro, F. A., Wiezel, G. A., Cardoso, I. A., Ferreira, I. G., de Oliveira, I. S., Boldrini-França, J., Pucca, M. B., Baldo, M. A. & Arantes, E. C. (2020). From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01132

Borges, A., Rojas de Arias, A., de Almeida Lima, S., Lomonte, B., Díaz, C., Chávez-Olórtegui, C., Graham, M. R., Kalapothakis, E., Coronel, C. & de Roodt, A. R. (2020). Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Neglected Tropical Diseases, 14(12), e0008899. https://doi.org/10.1371/journal. pntd.0008899

Bosmans, F. & Tytgat, J. (2007). Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon, 49(2), 142-158. https://doi.org/10.1016/j.toxicon.2006.09.023

Brazón, J., Guerrero, B., D´Suze, G., Sevcik, C. & Arocha-Piñango, C. L. (2014). Fibrin(ogen)olytic enzymes in scorpion (Tityus discrepans) venom. Comparative Biochemistry and Physiology, Part B, 168, 62-69. https://doi.org/10.1016/j.cbpb.2013. 11.007

Brewer, M. S. & Cole, T. J. (2023). Killer Knots: Molecular Evolution of Inhibitor Cystine Knot Toxins in Wandering Spiders (Araneae: Ctenidae). Toxins, 15(2), 112. https://doi.org/10.3390/toxins15020112

Carcamo-Noriega, E. N., Olamendi-Portugal, T., Restano-Cassulini, R., Rowe, A., Uribe-Romero, S. J., Becerril, B. & Possani, L. (2018). Intraspecific variation of Centruroides sculpturatus scorpion venom from two regions of Arizona. Archives of Biochemistry and Biophysics, 638, 52-57. https://doi.org/10.1016/j.abb.2017.12.012

Cesaretli, Y. & Ozkan, O. (2011). A clinical and epidemiological study on spider bites in Turkey. Asian Pacific Journal of Tropical Medicine, 4(2), 159-162. https://doi.org/10.1016/S1995-7645(11)60060-6

Chaves-Moreira, D., Senff-Ribeiro, A., Wille, A. C. M., Gremski, L. H., Chaim, O. M. & Veiga, S. S. (2017) Highlights in the knowledge of brown spider toxins. Journal of Venomous Animals and Toxins including Tropical Diseases, 23(6). https://doi.org/10.1186/ s40409-017-0097-8

Corsi, S. O., Del Río, O. E., Peña, R. A. & Acuña, R. D. (2017). Latrodectismo. Caso clínico y revisión de la literatura. ARS MEDICA Revista de Ciencias Médicas, 42(3), 26-30. http://dx.doi.org/10.11565/arsmed.v42i3.1003

D´Suze, G., Schwartz, E. F., García-Gómez, B. I., Sevcik, C. & Possani, L. D. (2009). Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie, 91, 1010-1019. https://doi.org/10.1016/j.biochi. 2009.05.005

de Oliveira, U. C., Candido, D. M., Coronado Dorce, V. A. & Junqueira-de-Azevedo, I. M. (2015). The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon, 95, 52-61. https://doi.org/10.1016/ j.toxicon.2014.12.013

de Oliveira, U. C., Nishiyama, M. Y., dos Santos, M. V., Santos-da-Silva, A. P., Chalkidis, H. M., Souza-Imberg, A., Candido, D. M., Yamanouye, N., Coronado-Dorce, V. A. & Junqueira-de-Azevedo, I. M. (2018). Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS ONE, 13(3), e0193739. https://doi.org/10.1371/journal. pone.0193739

de Roodt, A. R, Coronas, F. I., Lago, N., González M. E., Laskowicz, R. D., Beltramino, J. C., Saavedra, S., López, R. A., Reati, G. J., Vucharchuk, M. G., Bazán, E., Varni, L., Salomón, O. D. & Possani, L. D. (2010). General biochemical and immunological characterization of the venom from the scorpion Tityus trivittatus of Argentina. Toxicon, 55(2-3), 307–319. https://doi.org/ 10.1016/j.toxicon.2009.08.014

Dias, N. B., de Souza, B. M., Cocchi, F. K., Chalkidis, H. M., Coronado Dorce, V. A. & Palma, M. S. (2018). Profiling the short, linear, non-disulfide bond-containing peptidome from the venom of the scorpion Tityus obscurus. Journal of Proteomics, 170, 70-79. https://doi.org/10.1016/j.jprot.2017.09. 006

Durán-Barrón, C. G., Montiel, G., Valdez-Mondragón, A., Villegas, G., Paredes-León, R. & Pérez, T. M. (2017). Arácnidos. En La biodiversidad en la Ciudad de México (págs. 229-238). México: CONABIO/SEDEMA

Emerich, B. L., De Lima, M. E., Martin-Eauclaire, M. F. & Bougis, P. E. (2018). Comparative analyses and implications for antivenom serotherapy of four Moroccan scorpion Buthus occitanus venoms: Subspecies tunetanus, paris, malhommei, and mardochei. Toxicon, 149, 26-36. https://doi.org/10.1016/j.toxicon.2017. 07.010

FDA. (2024). Federal Food Drug and Cosmetic Act. Definitions. https://uscode.house.gov/ view.xhtml?req=granuleid:USC-prelim-title21-section321&num=0&edition=prelim

Fernández-Taboada, G., Riaño-Umbarila, L., Olvera-Rodríguez, A., Gómez-Ramírez, I. V., Losoya-Uribe, L. F. & Becerril, B. (2021). The venom of the scorpion Centruroides limpidus, which causes the highest number of stings in Mexico, is neutralized by two recombinant antibody fragments. Molecular Immunology, 137, 247-255. https://doi.org/10.1016/j.mol imm.2021.07.010

Ferraz, C. R., Manchope, M. F., Andrade, K. C., Saraiva-Santos, T., Franciosi, A., Zaninelli, T. H., Bagatim-Souza, J., Borghi, S. M. Cândido, D. M., Knysak, I., Casagrande, R., Kwasniewski, F. H. & Verri, W. A. (2021). Peripheral mechanisms involved in Tityus bahiensis venom-induced pain. Toxicon, 200, 3-12. https://doi.org/10.1016/j.toxicon.2021. 06.013

Ferreira, L. A., Alves, E. W. & Henriques, O. B. (1993). Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon, 31(8), 941-047. https://doi.org/10.1016/0041-0101(93)90253-F

Ferreira, S.H., Bartelt, D.C. & Greene L.J. (1970). Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry, 9, 2583-2593. https://doi.org/10.1021/bi00815a005

Frangieh, J., Rima, M., Fajloun, Z., Henrion, D., Sabatier, J. M., Legros, C. & Mattei, C. (2021) Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules, 26(8), 2223. https://doi.org/ 10.3390/molecules26082223

Gonzaga-Pimenta, R. J., Pinto Brandão-Dias, P. F., Gomes Leal, H., Oliveira do Carmo, A., Ribeiro de Oliveira-Mendes, B. B., Chávez-Olórtegui, C. & Kalapothakis, E. (2019). Selected to survive and kill: Tityus serrulatus, the Brazilian yellow scorpion. PLoS ONE, 14(4), e0214075. https://doi.org/ 10.1371/journal.pone.0214075

Goudet, C., Chi, C. W. & Tytgat, J. (2002). An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon, 40(9), 1239-1258. https://doi.org/10.1016/S0041-0101(02)00142-3

Gueron, M., Ilia, R. & Margulia, G. (2000). Arthropod poisons and the cardiovascular system. The American Journal of Emergency Medicine, 18(6), 708-714. https://doi.org/10.1053/ajem.2000.9265

Hauke, T. J. & Herzig, V. (2017). Dangerous arachnids—Fake news or reality? Toxicon, 138, 173-183. https://doi.org/10.1016/ j.toxicon.2017.08.02.

Heitsch, H. (2003). The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opinion on Investigational Drugs, 12(5), 759-770. https://doi.org/10.1517/13543784. 12.5.759

Hernandez-Fernandez, J., Neshich, G. & Camargo, A. C. (2004). Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genetics and Molecular Research, 3(4), 554-563. https://pubmed.ncbi.nlm.nih.gov/15688321/

Herzig, V., Cristofori-Armstrong, B., Israel, M. R., Nixon, S. A., Vetter, I. & King, G. F. (2020). Animal toxins — Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochemical Pharmacology, 181. https://doi.org/10.1016/j.bcp.2020.114096

Higashikuni, Y., Liu, W. & Sata, M. (2023). Not a small frog in a big pond: targeting bradykinin receptor B2 signaling in vascular smooth muscle cells for treatment of hypertension. Hypertension Research, 46, 2415-2418. https://doi.org/10.1038/s41440-023-01385-w

Ianzer, D., Souza Santos, R. A., Etelvino, G. M., Xavier, C. H., de Almeida Santos, J., Pereira Mendes, E., Tapias Machado, L., Prezoto, B. C., Dive, V. & Martins de Camargo, A. C. (2007). Do the Cardiovascular Effects of Angiotensin-Converting Enzyme (ACE) I Involve ACE-Independent Mechanisms? New Insights from Proline-Rich Peptides of Bothrops jararaca. The Journal of Pharmacology and Experimental Therapeutics, 322(2), 795-805. https://doi. org/10.1124/jpet.107.120873

Isbister, G. K. & White, J. (2004). Clinical consequences of spider bites: recent advances in our understanding. Toxicon, 43(5), 477-492. https://doi.org/10.1016/j.toxicon.2004.02.002

Izquierdo, L. M. & Rodríguez-Buitrago, J. R. (2012). Cardiovascular dysfunction and pulmonary edema secondary to severe envenoming by Tityus pachyurus sting. Case report. Toxicon, 60(4), 603-606. https://doi. org/10.1016/j.toxicon.2012.05.021

Jean, M., Gera, L., Charest-Morín, X., Marceau, F. & Bachelard, H. (2016). In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases. Frontiers in Pharmacology, 6(306), 306. https://doi.org/10.3389/fphar.2015.00306

Lange, C., Paris, C. & Clerier, M. L. (1992). The components of the venom of a spider Scodra griseipes. 1. Analysis of low molecular weight products using gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 6(4), 289-92. https://doi.org/10.1002/rcm.1290060413

Langenegger, N., Nentwig, W. & Kuhn-Nentwig, L. (2019). Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins, 11(10), 611. https://doi.org/10.3390/ toxins11100611

Louza, G., Garcez do Carmo, L. L. & Conceição, I. M. (2020). Effect of Tityus serrulatus scorpion venom on isolated jejunum: A very useful tool to study the interaction between neurons in the enteric nervous system. Autonomic Neuroscience: Basic and Clinical, 227, 102676. https://doi.org/10.1016/j.autneu. 2020.102676

Machado, R., Junior, L., Monteiro, N., Silva-Júnior, A., Portaro, F., Barbosa, E., Braga, V. A. & Fernandes-Pedrosa, M. (2015). Homology modeling, vasorelaxant and bradykinin-potentiating activities of a novel hypotensin found in the scorpion venom from Tityus stigmurus. Toxicon, 101, 11-18. https://doi.org/10.1016/j.toxicon.2015. 04.003

Mahmoud, H. A., Salama, W. M., Mariah, R. A. & Eid, A. M. (2021). Ameliorative effect of Leiurus quinquestriatus venom on acetic acid-induced colitis in mice. Scientific African, 14, e01009. https://doi.org/10.1016/ j.sciaf.2021.e01009

Marchi, F. C., Mendes-Silva, E., Rodrigues-Ribeiro, L., Bolais-Ramos, L. G. & Verano-Braga, T. (2022). Toxinology in the proteomics era: a review on arachnid venom proteomics. Journal of Venomous Animals and Toxins including Tropical Diseases, 28, 20210034. https://doi.org/10.1590%2F1678- 9199-JVATITD-2021-0034

Marques-Neto, L. M., Trentini, M. M, Das Neves, R. C, Resende, D. P., Procopio, V. O, Da Costa, A. C., Kipnis, A., Mortari, M.R., Schwartz, E. F. & Junqueira-Kipnis, A. P. (2018). Antimicrobial and Chemotactic Activity of Scorpion-Derived Peptide, ToAP2, against Mycobacterium massiliensis. Toxins, 10(6), 219. https://doi.org/10.3390/toxins10060219

Martin-Eauclaire, M. F., Bosmans, F., Céard, B., Diochot, S. & Bougis, P. E. (2014). A first exploration of the venom of the Buthus occitanus scorpion found in southern France. Toxicon, 79, 55-63. https://doi.org/10.1016/j.toxicon. 2014.01.002

Martins, J. G., de Castro Figueiredo Bordon, K., Moreno-González, J. A., Ribeiro de Almeida, B. R., Pardal, P., de Araújo Lira, A. F., Cândido, D. M., Arantes, E. C. & de Lima Procópio, R. E. (2023). On the noxious black Amazonian scorpion, Tityus obscurus (Scorpiones, Buthidae): Taxonomic notes, biology, medical importance and envenoming treatment. Toxicon, 228, 107125.

Megaly, A. M. A., Miyashita M., Abdel-Wahab, M., Nakagawa, Y. & Miyagawa, H. (2022). Molecular Diversity of Linear Peptides Revealed by Transcriptomic Analysis of the Venom Gland of the Spider Lycosa poonaensis. Toxins, 14(12), 854. https://doi. org/10.3390/toxins14120854

Meki, A. R., Nassar, A. Y. & Rochat, H. (1995). A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides, 16(8), 1359-1365. https://doi.org/10.1016/0196-97 81(95)02036-5

Mendoza-Tobar, L. L., Clement, H., Sepulveda-Arias, J. C., Guerrero Vargas, J. A. & Corzo, G. (2024). An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 30, e20230063. https://doi.org/10.1590/1678-9199-jvatitd-2023-0063

Mendoza-Tobar, L. L., Meza-Cabrera, I. A., Sepúlveda-Arias, J. C. & Guerrero-Vargas, J. A. (2021). Comparison of the Scorpionism Caused by Centruroides margaritatus, Tityus pachyurus and Tityus n. sp. aff. metuendus Scorpion Venoms in Colombia. Toxins, 13(11), 757. https://doi.org/10.3390/toxins13110757

Nassar, A. Y., Abu-Sinna, G. & Abu-Amra, S. (1989). Isolated fractions from toxins of Egyptian scorpions and cobra, activated smooth muscle contraction and glomerular filtration. Toxicon, 27(1), 65.

Nguyen, N. & Pandey, M. (2019). Loxoscelism: Cutaneous and Hematologic Manifestations. Advances in Hematology, 2019, 4091278. https://doi.org/10.11 55 /2019/4091278

Omran, M., Abdel-Rahman, M. & Nabil, Z. I. (1992a). Effect of scorpion Leiurus quinquestriatus (H&E) venom on rat’s heart rate and blood pressure. Toxicology Letters, 61(1), 111-121. https://doi.org/10.1016/0378- 4274(92)90069-V

Omran, M., Abdel-Rahman, M. S. & Nabil, Z. I. (1992b). The role of propranolol and atropine in mitigating the toxic effects of scorpion venom on rat electrocardiogram. Toxicology Letters, 61(2-3), 175-184. https://doi.org/10. 1016/0378-4274(92)90144-9

Ortuño-Lazarte, P. E. & Ortiz-Samur, N. P. (2009). Latrodectismo. Revista Científica Ciencia Medica, 12(1), 25-28. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1817-74332009000100009&lng=es&nrm=iso

Pucca, M. B., Cerni, F. A., Pinheiro Junior, E. L., Bordon, K. F., Amorim, F. G., Cordeiro, F. A., Longhim, H. T., Cremonez, C. M., Oliveira, G. H. & Arantes, E. C. (2015). Tityus serrulatus venom – A lethal cocktail. Toxicon, 108, 272-284. https://doi.org/10. 1016/j.toxicon.2015.10.015

Rates, B., Ferraz, K., Borges, M., Richardson, M., De Lima, M. E. & Pimenta, A. (2008). Tityus serrulatus venom peptidomics: Assessing venom peptide diversity. Toxicon, 52(5), 611-618. https://doi.org/10.1016/j.toxicon. 2008.07.010

Rocha, M., Beraldo., W.T. & Rosenfeld, G. (1949). Bradykinin, a hypotensive and a smooth muscle stimulating factor released from plasma globulin by snake venom and by trypsin. American Journal of Physiology, 156, 261-270. https://doi.org/10.1152/ajplegacy.1949.156.2.261

Romero-Imbachi, M. R., Cupitra, N., Ángel, K., González, B., Estrada, O., Calderón, J., Guerrero-Vargas, J., Beltrán, J. & Narvaez-Sanchez, R. (2021). Centruroides margaritatus scorpion complete venom exerts cardiovascular effects through alpha-1 adrenergic receptors. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 240, 108939. https://doi.org/10.1016/j.cbpc.2020.108939

Schmidt, J. O. (2019). Arthropod Toxins and Venoms. En G. R. Mullen, & L. A. Durden (Edits.), Medical and Veterinary Entomology (Tercera ed., págs. 23-31). Academic Press. https://doi.org/10.1016/B978-0-12-814043-7.00003-0

Sciani, J. M. & Pimenta, D. C. (2017). The modular nature of bradykinin potentiating peptides isolated from snake venoms. Journal of Venomous Animals and Toxins including Tropical Diseases, 23, 45. https://doi.org/ 10.1186/s40409-017-0134-7

Selden, P. A. (2017). Arachnids. En Encyclopedia of Biodiversity (págs. 202-217). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.02243-3

Shanu-Wilson, J., Evans, L., Wrigley, S., Steele, J., Atherton, J. & Boer, J. (2020). Biotransformation: Impact and Application of Metabolism in Drug Discovery. ACS Medicinal Chemistry Letters, 11(11), 2087-2108. https://dx.doi.org/10.1021/acsmedchemlett.0c00202?ref=pdf

Sharma, J. N. & Narayanan, P. (2015). Basic Pharmacology of Bradykinin Receptor Agonists. Austin Journal of Pharmacology and Therapeutics, 3(2), 1070. https://austinpublishinggroup.com/pharmacology-therapeutics/fulltext/ajpt-v3-id1070.php

Shen, J. K. & Zhang, H. T. (2022). Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacologica Sinica, 44, 489-498. https://doi.org/10.1038/s41401-022- 00982-8

Silva, N. A., Albuquerque, C. M. R., Marinho, A. D., Jorge, R. J. B., Silva Neto, A. G., Monteiro, H. S. A., Silva, T. D., Silva, M. V., Correia, M. T. S., Pereira, T. P., Martins, A. M. C., Menezes, D. B., Ximenes, R. M. & Martins, R. D. (2016). Effects of Tityus stigmurus (Thorell 1876) (Scorpiones: Buthidae) venom in isolated perfused rat kidneys. Anais da Academia Brasileira de Ciências, 88, 665–675. https://doi.org/10.1590/0001-3765201620150253.

Sosnina, N. A., Golbenko, Z. & Akhunov, A. A. (1989). Bradykinin-potentiating peptide from venom of the spider Latrodectus tredecimguttatus. Chemistry of Natural Compounds, 25, 596–599. https://doi.org/10.1007/BF00598083

Verano-Braga, T., De Lima, M. E. & de Castro Pimenta, A. (2009). From bradykinin-potentiating peptides to hypotensins: More than four decades of research. En Animal toxins: state of the art - perspectives in health and biotechnology (págs. 235-247). Editora UFMG.

Verano-Braga, T., Figueiredo-Rezende, F., Melo, M., Lautner, R., Gomes, E., Mata-Machado, L., Murari, A., Rocha-Resende, C., de Lima, M. E., Guatimosim, S., Santos, R. & Pimenta, A. (2010). Structure–function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B2 kinin receptor. Toxicon, 56(7), 1162-1171. https://doi.org/10.1016/j.toxicon.2010.04.006

Verano-Braga, T., Rocha-Resende, C., Silva, D. M., Ianzer, D., Martin-Eacuclaire, M. F., Bougis, P. E., de Lima, M. E., Santos, R. & Pimenta, A. M. (2008). Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 371(3), 515-520. https://doi.org/10.1016/j.bbrc.2008.04.104

Vrenozi, B. (2022). Venomous spiders of Albania –does an increase of temperature influence the toxicity of spider venom? Toxicon: X, 15, 100135. https://doi.org/10.1016/j.toxcx.2022. 100135

Ward, M., Ellsworth, S. & Nystrom, G. (2018). A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 151, 137-155. https://doi.org/10.1016/j.toxicon.2018.07.007

Wiezel, G. A., Oliveira, I. S., Reis, M. B., Ferreira, I. G., Cordeiro, K. R., Bordon, K. & Arantes, E. C. (2024). The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie, 220, 144-166. https://doi.org/10.1016/j.biochi. 2023.12.012

World Spider Catalog (2024). World Spider Catalog. Version 25.0. Natural History Museum Bern, online at http://wsc.nmbe.ch, accessed on {2024-05-25}. https://doi.org/10.24436/2

Xia, Z., He, D., Wu, Y., Kwok, H. F. & Cao, Z. (2023). Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacological Research, 197, 106978. https://doi.org/ 10.1016/j.phrs.2023.106978

Yu, Y., Xu, L. S., Wu, Y., Su, F. F., Zhou, X. M. & Xu, C. (2021). The antihypertensive effect of MK on spontaneously hypertensive rats through the AMPK/Akt/eNOS/NO and ERK1/2/Cx43 signaling pathways. Hypertension Research, 44, 781-790. https://doi.org/10.1038/s41440-021-00638-w

Zeng, X. C., Li, W. X., Peng, F. & Zhu, Z. H. (2000). Cloning and Characterization of a Novel cDNA Sequence Encoding the Precursor of a Novel Venom Peptide (BmKbpp) Related to a Bradykinin-Potentiating Peptide from Chinese Scorpion Buthus martensii Karsch. IUBMB Life, 49(3), 207-210. https://doi.org/ 10.1080/713803610

Zeng, X. C., Wang, S. X., Zhu, Y., Zhu, S. Y. & Li, W. X. (2004). Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides, 25(2), 143-150. https://doi.org/10.1016/j.peptides. 2003.12.003

Creative Commons License

TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

Downloads

Download data is not yet available.